

STUDY AREA 16

(Former Creosote Dip Tank And Fire Fighting Training Area)
Comprehensive Report/Study Area Screening Evaluation Volume
Volume 1: Technical Report And Appendices

Naval Construction Battalion Center Davisville, Rhode Island

Contract No. N62472-92-D-1296 Contract Task Order No. 60

Prepared for

Department of the Navy
Northern Division
Naval Facilities Engineering Command
10 Industrial Highway
Mail Stop No. 82
Lester, Pennsylvania 19113-2090

Prepared by

EA Engineering, Science, and Technology 175 Middlesex Turnpike, Third Floor Bedford, Massachusetts 01730 781.275.8846

STUDY AREA 16

(Former Creosote Dip Tank And Fire Fighting Training Area) Comprehensive Report/Study Area Screening Evaluation Volume Volume 1: Technical Report And Appendices

Naval Construction Battalion Center Davisville, Rhode Island

Contract No. N62472-92-D-1296 Contract Task Order No. 60

Prepared for

Department of the Navy
Northern Division
Naval Facilities Engineering Command
10 Industrial Highway
Mail Stop No. 82
Lester, Pennsylvania 19113-2090

Prepared by

EA Engineering, Science, and Technology 175 Middlesex Turnpike, Third Floor Bedford, Massachusetts 01730 781.275.8846

> FINAL December 1999 29600.60.2293

STUDY AREA 16 (Former Creosote Dip Tank And Fire Fighting Training Area) Comprehensive Report/Study Area Screening Evaluation Volume 1: Technical Report And Appendices

NAVAL CONSTRUCTION BATTALION CENTER NORTH KINGSTOWN, RI

CONTRACT NUMBER N62472-92-D-1296 DELIVERY ORDER NO. 0060

James A. Shultz CTO Manager

Dai

Brian Lesinski

Deputy Program Manager

30 DOCOMBO-1999

Date

CONTENTS

LIST OF FIGURES LIST OF TABLES LIST OF ACRONYMS AND ABBREVIATIONS

EXECUTIVE SUMMARY

1.	INTROD	UCTION	<u>Page</u> 1-1
	_	tive and Scope	1-1
	•	rt Organization	1-2
	1.3 Backs	ground	1-2
	1.3.1	NCBC Davisville	1-2
	1.3.2	Study Area 16 (EBS Review Item 28)	1-3
	1.3.3	Previous Investigations	1-4
		1.3.3.1 Soil Removal Action	1-4
		1.3.3.2 Phase II EBS	1-5
		1.3.3.3 Phase II EBS Follow-On Investigation	1-6
	1.4 Phase	II EBS Follow-On Addendum II Investigations	1-9
	1.4.1	Soil Sampling	1-10
	1.4.2	Ground-Water Sampling	1-11
	1.4.3	Seep Sampling	1-12
2.	FIELD IN	IVESTIGATIONS AND PROCEDURES	2-1
	2.1 Groun	nd-Water Sample Collection	2-1
	2.2 Subsu	rface Soil Sample Collection	2-1
	-	Sample Collection	2-1
	_	le Packaging and Shipping, Designation, and Labeling	2-1
	-	le Documentation	2-1
		xy Assurance/Quality Control	2-1
		-Of-Custody Forms	2-2
		ntamination Procedures	2-2
		Handling Procedures	2-2
		te Testing and Disposal	2-2
	2.11 Surv	•	2-2
	2.12 Data Interpretation		2-2
		Field Screening Data	2-3
		Laboratory Analyses	2-3
		Screening Criteria for Data Analysis	2-3
	2.12.4	Data Validation	2-5

3.	PHYSICAL CHARACTERISTICS	3-1
	3.1 Physiography3.2 Climate Characterization3.3 Surface Water Hydrology	3-1 3-1 3-2
	3.3.1 Regional Surface Water3.3.2 Local Surface Water	3-2 3-2
	3.4 Geology	3-3
	3.4.1 Regional Geology 3.4.2 Site Geology	3-3 3-3
	3.5 Hydrogeology	3-5
	3.5.1 Regional Hydrogeology 3.5.2 Local Hydrogeology	3-5 3-5
4.	INVESTIGATION RESULTS	4-1
	4.1 Previous Investigations	4-1
	 4.1.1 Soil Removal Action 4.1.2 Phase II EBS Investigation 4.1.3 Phase II EBS Follow-On Investigation 	4-1 4-1 4-2
	4.2 Phase II EBS Follow-On Addendum II	4-3
	4.2.1 Surface and Subsurface Soil4.2.2 Ground-Water and Seep Water	4-3 4-4
5.	CONCLUSIONS AND RECOMMENDATIONS	5-1
	5.1 Conclusions 5.1.1 Soil 5.1.2 Groundwater 5.1.3 Seep 5.1.4 UST Area/Septic Tanks	5-1 5-1 5-2 5-2 5-2
	5.2 Recommendations	5-3

REFERENCES

APPENDIX A PHASE II EBS INVESTIGATION

- A-1 Review Item 28 (Former Creosote Dip Tank Area)
 Figure, Boring Logs, and Analytical Data Summary Table
- A-2 Review Item 60 (Septic Tanks Building E-107)
 Geophysical Survey, Figures, and Analytical Data Summary Tables
- A-3 UST Remedial Investigation Report, December 1994 UST Location 68, Area E (Review Item 85)
 Figures, Boring Logs, and Analytical Data Summary Tables
- A-4 Review Item 85 (UST Southwest of Building E-107)
 Boring Logs and Analytical Data Summary Table
- A-5 Review Item 86 (Floor Drains, Building E-107)

APPENDIX B PHASE II EBS FOLLOW-ON INVESTIGATION

- B-1 Review Item 28 (Former Creosote Dip Tank and Fire Fighting Training Areas)
 Figures and Boring Logs
 Data Validation Reports (included in Volume 2)
- B-2 Review Item 28 (UST Area)

 Magnetometer Survey Report
- B-3 Review Item 28 (UST Area)
 Test Pit Logs and Analytical Report (FWENC)
- B-4 Review Item 28 (UST Area) Test Pit Logs (EA/FWENC)
- B-5 Review Item 60 (Septic Tanks Building E-107)

 Tank Removal Data Validation Report (included in Volume 2)

APPENDIX C PHASE II EBS FOLLOW-ON ADDENDUM II INVESTIGATION

- C-1 Review Item 28 (Former Creosote Dip Tank and Fire Fighting Training Areas)
 Boring Logs
 Data Validation Reports (included in Volume 2)
- C-2 Review Item 28 (Former Creosote Dip Tank and Fire Fighting Training Areas)
 Survey Data

LIST OF FIGURES

Figure	<u>Title</u>
1-1	Site Locus Map, NCBC Davisville
1-2	Site Map, Study Area 16
1-3	Ground-Water, Seep, and Soil Sampling Locations
3-1	Location of Geologic Cross-Sections
3-2	Geologic Cross-Section A-A'
3-3	Geologic Cross-Section B-B'
5-1	COC Exceeding RIDEM Residential Direct Exposure Criteria in Soil Samples
5-2	COC Exceeding RIDEM Industrial Direct Exposure Criteria in Soil Samples
5-3	COC Exceeding RIDEM GB Leachability Criteria in Soil Samples
5-4	COC Exceeding RIDEM GB Objectives in Ground-Water Samples and AWQC in
	Seep Samples
5-5	COC Exceeding Federal MCL in Ground-Water Samples
	3

LIST OF TABLES

Table	Title
2-1	Summary of Analytical Program
2-2	Volatile Organic Compounds Screening Criteria
2-3	Semi-Volatile Organic Compounds Screening Criteria
2-4	Total Petroleum Hydrocarbons Screening Criteria
2-5	Inorganic Screening Criteria
2-6	Pesticide/PCB Screening Criteria
4-1	SVOC Detected in Soil Samples during the Phase II EBS Investigation
4-2	Analytes Detected in Soil and Ground-Water Samples during the Phase II EBS Follow-On Investigation
4-3	Analytes Detected in Soil Samples during the Phase II EBS Follow-On Addendum II Investigation
4-4	Analytes Detected in Ground-Water and Seep Samples during the Phase II EBS Follow-On Addendum II Investigation

LIST OF ACRONYMS AND ABBREVIATIONS

AWQC Ambient Water Quality Criteria

BCT BRAC Cleanup Team

BRAC Base Realignment and Closure Act

bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act, 1980

CRDL Contract Required Detection Limit

DAF Dilution/Attenuation Factor(s)
DNAPL Dense, Non-Aqueous Phase Liquid

EA Engineering, Science, and Technology

EBS Environmental Baseline Survey

EPA United States Environmental Protection Agency

FFTA Fire Fighting Training Area

FWENC Foster Wheeler Environmental Corporation

GPR Ground-Penetrating Radar GRO Gasoline-Range Organics

IDLInstrument Detection LimitIDWInvestigative-Derived WasteIR ProgramInstallation Restoration Program

MCL Maximum Contaminant Level(s)

NAS Naval Air Station

NCBC Naval Construction Battalion Center

NPL National Priorities List

PAH Polycyclic Aromatic Hydrocarbon(s)

PCB Polychlorinated Biphenyl(s)
PID Photoionization Detector

ppm part(s) per million

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan

RAC Remedial Action Contractor

RBC Risk-Based Criteria

EA Engineering, Science, and Technology

RCRA Resource Conservation and Recovery Act

RIDEM Rhode Island Department of Environmental Management

RIEDC Rhode Island Economic Development Corporation

RIPA Rhode Island Port Authority

SASE Study Area Screening Evaluation

SDWA Safe Drinking Water Act SSL Soil Screening Level(s)

SVOC Semivolatile Organic Compound(s)

TAG Technical Advisory Group

TAL Target Analyte List TCE Trichloroethene

TCL Target Compound List

TPH Total Petroleum Hydrocarbon(s)

USDA United States Department of Agriculture

USGS United States Geologic Survey UST Underground Storage Tank

VOC Volatile Organic Compound(s)

EXECUTIVE SUMMARY

INTRODUCTION

This Comprehensive Report/Study Area Screening Evaluation (SASE) report has been prepared by EA Engineering, Science, and Technology to address Installation Restoration Program Study Area 16 (Creosote Dip Tank and Fire Fighting Training Area), at the Naval Construction Battalion Center (NCBC) Davisville, Rhode Island. In previous investigations, the site was designated Review Item 28 (Creosote Dip Tank Area) of the Phase II Environmental Baseline Survey (EBS). Based on the results of the most recent investigation, the Base Realignment and Closure (BRAC) Cleanup Team has decided to pursue the investigation of this site under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The previous investigations in this area also included suspected former underground storage tanks (USTs), and floor drains and septic tanks associated with Building E-107. This report incorporates the data collected from previous EBS investigations (Phase II EBS and Phase II EBS Follow-On) and recent work performed at the site during October/November 1998, in accordance with the Phase II EBS Follow-On Investigation Work Plan Addendum II.

STUDY AREA 16

Study Area 16 is located in the eastern portion of Zone 3 at NCBC Davisville. The site is generally located within the area surrounded by Davisville Road to the south, Westcott Road to the west, Spink Neck Road to the east, and the Building E-107 area, former pump island area, and Allen Harbor to the north. The actual extent of the Study Area will be determined in a future study. Study Area 16 is primarily wooded with the exception of a paved area in the central portion of the site and a parking area around Building E-107. An unnamed asphalt-paved road circles the outer perimeter of the wooded area of Study Area 16 and was formerly used by the Navy for the purpose of training construction equipment operators. In the past, Study Area 16 was extensively bulldozed and disrupted during training exercises, but now has a vegetative cover of shrubs and grasses. The Navy has conducted investigations in the following areas of concern:

- Creosote Dip Tank Area Creosote dipping of wood pilings occurred during the late 1960s in the western portion of the site. The wood pilings were dipped into tanks containing creosote and staged in the area to dry before being loaded onto ships. An upended creosote dip tank was located in the western portion of the site adjacent to the paved road. The location where the tank was found is the "original" Creosote Dip Tank Area; however, subsequent work expanded the investigation area, once it was reported that past creosote dipping operations were likely conducted over a larger area than originally noted.
- Former Fire Fighting Training Area (FFTA) A FFTA was reportedly located in an asphalt-paved area to the east of the former creosote dip tank area. Reportedly, structures were constructed, doused with flammable materials, set on fire, and extinguished as part of fire fighting training exercises during the late 1960s.

- Former Underground Storage Tank Area UST 68 was removed from the south side of Building E-107 in 1992 (Review Item 85). Subsequently, four USTs were reported to have been located near Building E-107 (Review Item 28). Three of the USTs were reported to have been located to the west of Building E-107 in the vicinity of a pump island. One UST was reported to have been located by the southeast corner of Building E-107.
- Building E-107 Floor Drains Six floor drains identified in Building 107 (EBS Review Item 86). Two were under floor tile, and four were visible.
- Building E-107 Septic Tanks An active septic tank and leach field northwest of the building were investigated during the Phase II EBS and Phase II EBS Follow-on Investigations (Review Item 60). A geophysical survey was conducted to locate a second septic tank on the southeast side of the building; however, an extensive program of excavation in the areas of detected magnetic anomalies uncovered no evidence of remaining USTs.

FIELD INVESTIGATIONS

Previous investigations completed at Study Area 16 include: a limited soil removal action in 1992; a 1994 UST Remedial Investigation at UST Location 68, south of Building E-107; a Phase II EBS in 1996 (soil sampling); and a Phase II Follow-On Investigation in 1997 (test pits, magnetometer survey, soil/ground-water sampling, septic tank sludge evaluation). The Remedial Action Contractor (RAC) also conducted test pit excavation and septic tank removals for several Review Items in the Study Area. In October/November 1998, the Navy conducted a Phase II Follow-On Addendum II investigation (soil, ground-water, and seep sampling). The objectives of this most recent investigation were as follows:

- To further evaluate ground water beneath the former Creosote Dip Tank Area, the FFTA, the septic tank formerly located at the southeast corner of Building E-107, and an earth ramp structure southeast of Building E-107;
- To evaluate subsurface soil beneath debris layers observed in test pits during the Phase II EBS Follow-On Investigation; and
- To evaluate the quality of water discharging from a seep near Building E-107 into Allen Harbor.

The objectives of the Phase II Follow-On Workplan Addendum II Investigation were addressed by collecting four subsurface soil samples, one surface soil sample, sixteen ground-water samples from eight locations, and one sample of a seep on the shore of Allen Harbor in the area of Building E-107.

Data from the Phase II EBS, Phase II EBS Follow-On, and Phase II EBS Follow-On Addendum II investigations were compared to Federal and State criteria. The key screening criteria used to

summarize the results were the Rhode Island Department of Environmental Management (RIDEM) Residential Direct Soil Exposure Criteria, the RIDEM Industrial/Commercial Direct Soil Exposure Criteria, the RIDEM Class GB Leachability Criteria, and the Federal Safe Drinking Water Act (SWDA) Maximum Contaminant Levels (MCL) and marine chronic Ambient Water Quality Criteria (AWQC). These criteria were chosen because constituent concentrations above these criteria may drive regulatory actions. The United States Environmental Protection Agency (EPA) Region IX Risk-Based Concentrations (RBC) and Soil Screening Levels (SSL) Dilution Attenuation Factor (DAF) 20 were used if there were no RIDEM criterion for a given analyte.

CONCLUSIONS

The following conclusions are based upon the results of completed and recent investigations at Study Area 16:

Soil

- Semivolatile Organic Compounds [primarily Polycyclic Aromatic Hydrocarbons (PAH)] and several inorganic constituents (arsenic, lead, and beryllium) were detected in soil at concentrations exceeding RIDEM Residential Direct Soil Exposure Criteria or EPA Region IX Residential RBC. The PAH were detected in soil at the original Creosote Dip Tank Area. The inorganics were detected in four samples located throughout Study Area 16.
- Only benzo(a)pyrene was detected in soil exceeding RIDEM's Industrial/Commercial Direct Soil Exposure Criteria or EPA Region IX Industrial RBC. The elevated concentrations of benzo(a)pyrene were detected at two locations within the original Creosote Dip Tank Area.
- Benzo(a)anthracene, acetone, and antimony detected in soil (each in only one sample) exceeded the RIDEM GB Leachability Criteria or SSL DAF-20 criteria.
- Results from soil samples collected at locations where solid waste-type debris had been noted
 in test pits or soil borings were comparable to other soil results in the study area. Significant
 impact to soil from this debris was not identified.

Ground Water

- In ground water, only trichloroethene (TCE) detected in one ground-water sample exceeded RIDEM's GB Ground-Water Objective.
- TCE and/or vinyl chloride were detected at concentrations exceeding the Federal MCL in 5 of 8 ground-water sampling locations. Concentrations of both TCE and vinyl chloride were highest within the paved area suspected to be the location of the former FFTA. However, given the variations in the elevations at which ground-water samples were collected, the shape or extent of the area impacted by TCE and vinyl chloride cannot be determined from the available data.

Seep

Based on the one sample collected from the seep east of Building E-107, lead, dieldrin, endrin, heptachlor epoxide, and phenanthrene were detected at concentrations above marine chronic AWQC. Except for phenanthrene, the concentrations were higher in the seep sample than in a ground-water sample from an upgradient location. Therefore, the constituents detected in the seep sample may be from a source other than Study Area 16 ground water. Potential offsite sources may exist including the two marinas and storm water outfalls from nearby parking lots.

UST Area/Septic Tanks

- In the former UST area west and south of Building E-107, an extensive program of excavation in the areas of detected magnetic anomalies uncovered no evidence of remaining USTs.
- The two steel pontoon tanks southeast of Building E-107 were cleaned and removed. TPH-impacted soil surrounding the pontoon septic tanks was also removed. Final confirmatory samples in this area were below RIDEM Industrial Direct Soil Exposure Criteria and closure reports have been finalized for the UST area and the pontoon tanks.

RECOMMENDATIONS

EA recommends that a Remedial Investigation (RI) focused on ground water be conducted at Study Area 16. The RI should address the following objectives:

- Characterize the hydrogeology (stratigraphy and ground-water flow conditions) at the site;
- Further evaluate the horizontal and vertical extent of Chlorinated Volatile Organic Compounds (CVOC) in ground water;
- Identify the source of CVOC in ground water; and
- Evaluate risk to human health from site constituents.

Additional remedial action is not anticipated for soil, based on the low number and distribution of exceedences of residential or commercial/industrial screening criteria. However, the available soil data should be evaluated using a tiered, streamlined risk assessment approach to ensure protection of human health under the most likely exposure scenarios.

An additional recommendation from EPA and the Technical Advisory Group (TAG) is to include an evaluation of risk to the environment from site constituents. An additional recommendation from the TAG is to include SVOC and metals to the analytical program for soil and ground-water samples. The EPA also recommended that at least the first round of soil and ground-water samples be analyzed for the full TCL/TAL constituents during the RI. An additional recommendation from RIDEM is to include further assessment of the site soils in the RI.

1. INTRODUCTION

This Comprehensive Report/ Study Area Screening Evaluation (SASE) report has been prepared by EA Engineering, Science, and Technology (EA) to address Installation Restoration (IR) Program Study Area 16 (currently designated the "Creosote Dip Tank and Fire Fighting Training Area"), at the Naval Construction Battalion Center (NCBC) Davisville, Rhode Island (Figure 1-1). In previous investigations, the site was called Phase II Environmental Baseline Survey (EBS) Review Item 28 ("Creosote Dip Tank Area").

Study Area 16 includes the former Creosote Dip Tank Area and a suspected former Fire Fighting Training Area (FFTA) in Zone 3 of NCBC Davisville. In this area, the Navy has also completed investigations of suspected former underground storage tanks (UST) and septic tanks and floor drains associated with Building E-107. After the Base Realignment and Closure (BRAC) Cleanup Team (BCT)¹ reviewed preliminary data from the most recent investigation, they decided that Review Item 28 would be renamed Study Area 16, and that further investigation would be conducted under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) program, rather than the EBS program.

This Study Area 16 Comprehensive Report/SASE incorporates data collected from previous EBS investigations at Review Item 28, as well as the most recent work performed in the Fall of 1998 in accordance with the Phase II EBS Follow-On Investigation Work Plan Addendum II (EA 1998c). This report also summarizes the work completed at UST Location 68 (i.e., Review Item 85), and Review Items 60, 85, and 86, which are located in the Study Area.

1.1 OBJECTIVE AND SCOPE

7

The objective of this Comprehensive Report/SASE is to present the results of the Phase II EBS Follow-On Addendum II Investigation at Study Area 16 and to compile and include data from the numerous previous investigations. The report presents a comprehensive evaluation of the nature and extent of chemical constituents in environmental media at Study Area 16.

For the Phase II EBS, the Navy investigated 92 locations at NCBC Davisville to evaluate whether or not hazardous substances or petroleum products had been disposed or released to the environment. These locations, designated EBS Review Items, were investigated in accordance with the Phase II EBS Work Plan (EA 1995b). Field work was conducted during Spring/Summer 1996 and the results were reported in the Final Phase II EBS Report (EA 1998a). Three EBS Review Items (28, 60, 85, and 86) were in the Study Area. Review Item 28 comprises the largest area of the site.

Based on the results of the Phase II EBS data, the Navy conducted a Follow-On Investigation at various review items including Review Item 28 during Summer 1997. The results were reported in the Final Phase II EBS Follow-On Investigation Report (EA 1998b). Based on the data from

Contract N62472-92-D-1296: CTO 0060

¹ Consisting of the Navy, the United States Environmental Protection Agency Region I, and the Rhode Island Department of Environmental Management.

the Phase II EBS and the Phase II EBS Follow-On Investigations, the BCT recommended soil and septic tank removal actions as well as further investigation and sampling at the site. This additional field work at Study Area 16 was conducted during October/November 1998 in accordance with the Phase II EBS Follow-On Investigation Work Plan Addendum II (EA 1998c). To date, this is the only report that addresses the results of the Follow-On Addendum II Investigation.

1.2 REPORT ORGANIZATION

This Study Area 16 Comprehensive Report/SASE is organized as follows:

- Chapter 1 presents a brief description of the site and summarizes completed investigations.
- Chapter 2 summarizes the field investigations and sampling programs that were conducted during the Phase II Follow-On Addendum II Investigation.
- Chapter 3 discusses the physical characteristics of the site including the geology and hydrogeology.
- Chapter 4 presents a summary of the site data collected from the previous EBS investigations as well as the recent Phase II EBS Follow-On Addendum II investigation. Chapter 4 also presents an evaluation of the nature and extent of the chemical constituents identified at Study Area 16 as well as a comparison of the data to regulatory criteria.
- Chapter 5 presents the conclusions and recommendations.
- Supporting documentation is presented in the appendices.

1.3 BACKGROUND

1.3.1 NCBC Davisville

NCBC Davisville is located in the Town of North Kingstown, Rhode Island, approximately 18 miles south of the state capital, Providence. NCBC Davisville (Figure 1-1) is composed of three areas: the Main Center (Zones 1 through 4), the West Davisville storage area, and Camp Fogarty – a training facility located approximately 4 miles west of the Main Center. Camp Fogarty was transferred to the U.S. Department of the Army in December 1993 and is assigned to the Rhode Island National Guard. Adjoining the southern boundary of the Main Center is the decommissioned Naval Air Station (NAS) Quonset Point, which was transferred by the Navy to the Rhode Island Port Authority (RIPA) [currently named the Rhode Island Economic Development Corporation (RIEDC)] and others between 1975 and 1980.

NCBC Davisville's mission was to provide mobilization support to the active Naval Construction Force; to act as a mobilization base for the rapid assembly outfitting and readying of Reserve Construction Battalions; to store, preserve, and ship advanced base and mobilization stocks; and to procure, receive, pack, and ship collateral equipment for Atlantic, European, and Caribbean military construction projects. NCBC Davisville is comprised primarily of warehouse space and freight yards, most of which are currently empty.

In 1974, the NAS and a Naval Air Rework Facility at Quonset Point were decommissioned, and operations at the base were greatly reduced pursuant to the Shore Establishment Realignment Act of 1973. In 1989, NCBC Davisville was placed on the United States Environmental Protection Agency's (EPA) National Priorities List (NPL). In 1991, the closure of NCBC Davisville was announced, and operations were phased down to minimum staffing levels for public works, maintenance, security, and personnel. NCBC Davisville was decommissioned on 25 March 1994 and closed on 1 April 1994 under the BRAC. A detailed description of the Base history can be found in the Final Basewide EBS (EA 1995).

NCBC Davisville was transferred to Northern Division, Naval Facilities Engineering Command, which has caretaker status pending disposal. Most of the staff and materials have been moved offsite. Currently, facilities management and security staff engaged with base closure remain onbase. Northern Division is currently working closely with RIEDC towards lease or transfer of suitable parcels.

1.3.2 STUDY AREA 16 (EBS REVIEW ITEM 28)

Study Area 16 is located in the eastern portion of Zone 3 at NCBC Davisville (Figure 1-1). A Site Map is presented in Figure 1-2. The Study Area is generally defined as the area surrounded by Davisville Road to the south, Westcott Road to the west, Spink Neck Road to the east, and the Building E-107 area, former pump island area, and Allen Harbor to the north. The Site boundary shown on Figure 1-2 has been selected for convenience to be related to readily findable roads.

Study Area 16 is primarily wooded with the exception of a paved area in the central portion of the site. The area immediately around Building E-107 is also paved for parking. The area west of Building E-107 (east of Westcott Road) is grass covered. An unnamed asphalt-paved road circles the outer perimeter of the wooded area of Study Area 16 and was formerly used by the Navy for the purpose of training construction equipment operators. In the past, Study Area 16 was extensively bulldozed and disrupted during training exercises, but now has a vegetative cover of shrubs and grasses. The Navy has conducted investigations in the following areas of concern:

• Creosote Dip Tank Area – Creosote dipping of wood pilings occurred during the late 1960's in the western portion of the site. The wood pilings were dipped into tanks containing creosote and staged in the area to dry before being loaded onto ships. In the early 1990's an upended creosote dip tank was identified in the western portion of the site adjacent to the paved road. The location where the tank was found is the "original" Creosote Dip Tank Area that was first addressed by Halliburton NUS in 1992 and was further investigated by EA during the Phase II EBS. However, based on additional information provided by a former Seabee after the Phase II EBS field work was completed, the Navy learned that past creosote dipping operations were likely conducted over a larger area than originally thought. That area comprised the land west of and adjacent to a wooden bermed structure that is still present at the site (Figure 1-2). The Phase II EBS Follow-On and Addendum II work

investigated the "expanded" Creosote Dip Tank Area, based on information provided by the informant.

- Former Fire Fighting Training Area The Navy informant reported that a FFTA had been located in an asphalt-paved area to the east of the former Creosote Dip Tank Area (Figure 1-2). Reportedly, structures were constructed, doused with flammable materials, set on fire, and extinguished as part of fire fighting training exercises during the late 1960's.
- Former Underground Storage Tank Area One UST was removed from the south side of Building E-107 (EBS Review Item 85). Four USTs were subsequently reported to have been located near Building E-107. Three of the USTs were reported to have been located to the west of Building E-107 in the vicinity of a former pump island. One UST was reported to have been located by the southeast corner of Building E-107.
- Building E-107 Floor Drains Six floor drains identified in Building 107 (EBS Review Item 86). Two were under floor tile, and four were visible.
- Building E-107 Septic Tanks An active septic tank and leach field northwest of the building were investigated during the Phase II EBS and Phase II EBS Follow-on Investigations (Review Item 60). A geophysical survey was conducted to locate a second septic tank on the southeast side of the building.

1.3.3 Previous Investigations

This section summarizes the field work performed at Study Area 16 and the adjacent UST Area during previous EBS investigations at NCBC Davisville. Sampling results from these investigations are summarized in Chapter 4. Information associated with the Phase II EBS Investigation is presented in Appendix A, information relative to the Phase II EBS Follow-On Investigation is included in Appendix B, and Appendix C includes data gathered during the Phase II EBS Follow-On Addendum II Investigation.

1.3.3.1 Removal Action

In 1992, Halliburton NUS completed a soil removal action in a spill area around the upended creosote dip tank. The removal action included four phases and was intended to remove soil containing elevated concentrations of Polycyclic Aromatic Hydrocarbons (PAH). During the first three phases of the removal action, PAH were detected in soil down to approximately 4 ft below ground surface (bgs). The final phase IV consisted of the excavation of a PAH "hot spot" in soil (not considered to be part of the release) located in the area of the upended tank. At that time, a "hot spot" was defined by Halliburton NUS as soil boring sample concentrations that exceeded job-specific Resource Conservation and Recovery Act (RCRA) Media Cleanup Standards, based on a residential usage scenario. The conclusion of the Halliburton NUS report was that, although some PAH remained, the associated human health risk under a residential usage scenario (1.3x10⁵) was within EPA's acceptable target risk range of 10⁻⁴ to 10⁻⁶.

1.3.3.2 Phase II EBS (EA 1998a)

The Phase II EBS included four studies within the area now designated as Study Area 16: Review Item 28 (Creosote Dip Tank Area), Review Item 60 (Septic Tanks, Building E-107), Review Item 85 (near the former UST south of E-107) and Review Item 86 (Floor Drains, Building E-107).

Review Item 28 during the Phase II field investigation focused on the location of the previous excavation of the original creosote dip tank by Halliburton NUS. Using maps from the previous report and field observations, the former Phase IV excavation was located. On 24 April 1996, soil borings 28-SB-01A through 28-SB-01D² were then installed in the four corners of the former Phase IV excavation (Figure 1-3 – northwest portion of the Study Area). Split-barrel sampling was conducted at each location to a depth of 4 ft bgs. Jar headspace screening of soil samples resulted in a reading of 10.4 parts per million (ppm) from 28-SB-01D. The other jar headspace readings were below 3 ppm. Soil samples were collected from 0 to 2 ft bgs and from 2 to 4 ft bgs at each location. Four of the eight samples collected (28-SB-01A [2-4 ft]; 28-SB-01C [0-2 ft]; and 28-SB-01D [0-2 ft, 2-4 ft]) had to be recollected on 26 April 1996 due to questionable integrity of the sample containers. The samples were recollected and analyzed for PAH.

The locations of two septic tanks were identified by plan review and site inspection during the Review Item 60 investigation. The active tank is located northwest of Building E-107. The tank contains pumps that were formerly used to pump effluent to the leach field. Now it is periodically pumped out. The tank contents were sampled. Because levels of benzene, chlorobenzene, ethylbenzene, xylenes, barium, cadmium, chromium, and mercury were detected in septic sludge at levels that exceeded screening criteria, it was recommended that the tank contents be removed, and the leach field investigated in the Follow-on Investigation. The Remedial Action Contractor (RAC) pumped out and cleaned the tank.

A geophysical survey used Ground-Penetrating Radar (GPR) to locate the second septic tank shown on plans to be in the southern portion of the east side of Building E-107. The GPR signal only penetrated 7 ft bgs because of the high water table and the proximity to Allen Harbor. The GPR survey identified subsurface utility lines and a structure at approximately 6 ft bgs. Excavation was not conducted based on the likelihood that a septic tank would not be buried to 6 ft bgs and because of the proximity of the utility lines. Other septic tanks at NCBC Davisville were flush with the surface. The Phase II EBS recommended no further action for this area; however, two pontoon tanks were subsequently uncovered south of Building E-107 during the Phase II EBS Follow-On Investigation (Section 1.3.3.3).

In 1992, Tank 68 (i.e., a 1,520 gallon UST in Area E) was removed from the south side of Building E-107 by Franklin Environmental Services (Halliburton NUS 1994). This UST was

² In the Phase II EBS report, these locations were designated EBS-28-SB-1 through EBS-28-SB-4. The locations have been renamed to differentiate between soil borings EBS28-SB01 through EBS28-SB04 collected during the subsequent Phase II EBS Follow-On investigation.

reportedly used to store No. 2 fuel oil. In 1994, Halliburton NUS conducted a confirmatory sampling investigation by installing three borings in the vicinity of the former Tank 68. To collect a representative ground-water sample, one of these borings was transformed into a monitoring well. Soil samples from these borings had low TPH (65 ppm) but high jar headspace total volatile organic compounds (VOC) readings (>1000 ppm). Although no further action was recommended under the UST program, the location was designated EBS Review Item 85. The focus of Review Item 85 was to evaluate VOC in soil.

As part of the Phase II EBS, EA installed two soil borings with continuous split-barrels in the approximate location of the former tank, where previously elevated total VOC readings had been obtained by Halliburton NUS. The 0 to 2-ft and 2 to 4-ft intervals from EBS-85-SB-1 and the 2 to 4-ft and 8 to 10-ft intervals from EBS-85-SB-02 were submitted to the laboratory for target compound list (TCL) VOC analyses. Based on the analytical results (Chapter 4) no further action was recommended for EBS Review Item 85.

Six floor drains identified in Building E-107 were examined as a portion of the investigation conducted at Review Item 86. The floor drains were added to the investigation because of the potential threat of eventual discharge to the harbor. Public Works Drawing #594584 depicts three drain lines exiting the building at the southeast corner and into Allen Harbor. The position of the floor drains with respect to these lines shown on the plan suggested they were connected. The RAC excavated test pits between the building and an outfall pipe found at the edge of the harbor. No piping connecting floor drains to the outfall pipe was found. The four visible floor drains were closed by the RAC. The two drains under the floor tile in the sanitary facility were not closed; however, they are inaccessible under the floor tile.

1.3.3.3 Phase II EBS Follow-On Investigation (EA 1998b)

Subsequent to the Phase II EBS investigation, the Navy interviewed a former Seabee who participated in fire fighting training activities in the area in the 1960s. The informant reported that fire fighting training was conducted in the area now paved with asphalt in the center of Study Area 16. The informant also reported that the creosote dipping operations covered a larger area of the property (i.e., not just where the upended dip tank was located). He also reported that he recalled three USTs being associated with a pump island area that is still visible west of Building E-107 as well as one on the south east side of E-107. The Phase II EBS Follow-On Investigation evaluated the expanded Creosote Dip Tank Area, the reported FFTA, and the reported UST area.

The Phase II EBS Follow-On Investigation included a review of low altitude oblique angle aerial photographs, installation of soil borings and test pits in the expanded Creosote Dip Tank Area and the alleged FFTA, a magnetometer survey to assess whether USTs were still present in the ground west of and adjacent to Building E-107, test pit excavations to investigate the magnetic anomalies, and ground-water sampling from the former FFTA.

Creosote Dip Tank Area

Between 17 and 24 June 1997, eleven soil borings (28-SB-01, -02, -03, -04, -05, -06, -11, -12, -13, -15, and -16) were installed using hollow-stem augers in the area identified as the location of the former creosote dip tanks (Figure 1-3). Continuous split-barrel samples were collected from the ground surface to approximately 2 ft into the water table. One soil boring (28-SB-15) was advanced to auger refusal at 34 ft bgs. Two samples were collected from each boring location for laboratory analysis: one from the 0 to 2 ft interval and one from the sample with the highest headspace photoionization detector (PID) reading. Headspace readings are presented in Appendix D. Soil samples were analyzed for TCL-Semivolatile Organic Compounds (SVOC), TCL-VOC, and Total Petroleum Hydrocarbons (TPH) (Method 418.1). Approximately 20% of the samples were also analyzed for purgeable [gasoline-range organics (GRO)] TPH by modified Method 8015. One surface soil sample (28-SS-01) was collected from a gray soil horizon encountered in the wooden cribbing of the bermed structure and was analyzed for TCL-SVOC, TCL-VOC, and TPH (Method 418.1).

During soil boring installations, refusal was encountered at approximately 4 ft bgs in a non-vegetated, cobbled area east of the location of the upended dip tank. The boring was offset several times in an attempt to bypass the obstruction. On 14 July 1997, three test pits (TP-1, TP-2, and TP-3 as shown on Figure 1-3) were excavated in the area where refusal was encountered during drilling. Large cobblestones were encountered during the excavation, which accounted for the shallow auger refusal during drilling activities. Metal, wood, and glass debris were uncovered at 2 to 5 ft bgs in the three test excavations. No samples were collected for laboratory analysis from the test pits. In addition, wood and other debris were found in split-barrel soil samples from 28-SB-11 and 28-SB-12.

Based on the sampling results (Chapter 4), the Phase II EBS Follow-On Investigation recommended no further action for the original Creosote Dip Tank Area. However, the Navy planned to collect additional soil samples from the test pit locations where debris, porcelain shards, and glass were encountered as well as collecting shallow and deep ground-water samples. The additional sampling was planned and conducted as the Phase II EBS Follow-On Addendum II investigation (Section 1.4).

Fire Fighting Training Area

Between 17 and 24 June 1997, five soil borings (28-SB-07, -08, -09, -10, and -14) were installed in the reported former FFTA (Figure 1-3). Split-barrel samples of the soil were collected continuously from the ground surface to 2 ft into the water table. One boring (28-SB-14) was advanced to auger refusal at 42 ft bgs. Two samples were collected from each boring location for laboratory analysis: one from the 0 to 2 ft interval and one from the sample with the highest headspace PID reading. Soil samples were analyzed for TCL-SVOC, TCL-VOC, and TPH (Method 418.1). Approximately 20% of the samples were also analyzed for purgeable (GRO) TPH by modified Method 8015. Wood, porcelain, and glass debris were observed in soil samples collected from 28-SB-07, 28-SB-08, and 28-SB-14. One shallow ground-water sample

(28-GW-01A) was collected adjacent to 28-SB-14 using hydraulically-driven, direct-push sampling equipment. The sample was analyzed for TCL-VOC and TCL-SVOC.

Based on the sampling results (Chapter 4), the Phase II EBS Follow-On Investigation recommended no further action for soil at the former FFTA. However, the Navy planned to collect additional ground-water samples during the Phase II EBS Follow-On Addendum II investigation (Section 1.4) to further investigate the ground-water quality at Study Area 16. These data were also to be used to confirm the ground-water sampling data from the FFTA.

UST Investigation

A magnetometer survey was conducted in two areas where the Navy informant recalled that USTs were located. This area was to the west of, and at the southeast corner of, Building E-107 (Figure 1-2). Locations for the magnetometer readings were established in a grid pattern. One $30 \text{ ft} \times 90 \text{ ft}$ grid was established to the south of Building E-107 and a second $100 \text{ ft} \times 120 \text{ ft}$ grid was established around the area of the pump island west of Building E-107 (Figure 1-2). The magnetometer survey results are presented in Appendix B-2.

Areas where magnetic anomalies were detected within the grids were subsequently investigated by Foster Wheeler Environmental Corporation (FWENC) with nine test pits in an attempt to identify the source of the anomalies. No tanks were discovered. Although some metal debris was encountered in the test pits, the volume of debris was not sufficient to account for the detected magnetic anomalies. FWENC excavated the nine test pits in July 1997. Three soil samples (EBS28-P03, -P45, and -P40-2) were collected and analyzed for TPH (Methods 418.1 and 8015M), TCL-VOC, TCL-SVOC, pesticides, polychlorinated biphenyls (PCB), and RCRA 8 metals. A copy of FWENC's test pit logs and analytical findings are presented in Appendix B-3.

In August 1997, EA, in collaboration with FWENC, expanded the test pits in the two grid areas in an attempt to more adequately account for the reported magnetic anomalies. A copy of the EA/FWENC test pit logs and a site map showing the locations of these test pits are included in Appendix B-4.

In addition, a small test pit was also excavated across the asphalt-paved road in the area of the pipe from the pontoon septic tank. The pipe was found to continue under the road and approximately 50 ft into the wooded area south of Building E-107, where it ended.

Overall, the extensive program of excavation in the areas of detected anomalies uncovered no evidence of remaining USTs. The Phase II EBS Follow-On Investigation recommended no further action for the UST area.

Septic Tanks Associated with Building E-107

As described in the table for Test Pit 8 (Appendix B-3), an inactive septic tank and a quantity of petroleum-impacted soil were found on the south side of the southeast corner of Building E-107. A search for this septic tank was conducted as part of the investigation for Review Item 60. During the soil excavation two tanks were encountered. Based on the analytical data from the three soil samples (below the RIDEM Industrial/Commercial Direct Soil Exposure and DAF-20 criteria except for the sample EBS28-P-45), it was recommended that additional soil be removed from one of these sample locations and that additional post-removal confirmatory samples be collected and analyzed for TPH (Method 418.1), SVOC, and pesticides. The Navy directed FWENC to remove the septic tank and the associated petroleum impacted soil in that area.

On 9 December 1997, FWENC cleaned and removed the two steel pontoon tanks (approximately 7 ft x 5 ft x 5 ft each) (FWENC 1998a). The first tank served as a sludge settling tank and the second tank served as a liquid overflow tank. The tanks, which were situated in a 1 ft minus gravel pack, had circular holes randomly cut out of the bottom and lower edge of all four walls (designed to act as cesspools, collecting solids and discharging liquids to the surrounding soil).

FWENC removed the liquids and flowable solids from the septic tanks located to the southeast of Building E-107 (FWENC 1998b). The tanks, the gravel packing, and 1 ft of soil beyond the gravel packing were removed. The inlet line to the septic tanks from Building E-107 was severed near the tank and sealed with grout. The excavation was extended to the south to remove TPH impacted soil that was encountered during test pit operations. Once excavations were complete, confirmatory samples were collected. The excavated was lined with polyethylene sheeting and then backfilled. The confirmatory samples contained chemical constituents above RIDEM Industrial Direct Soil Exposure Criteria; therefore, the excavation was re-opened and the east and west side-walls were extended an additional 2 ft. A pipe leading toward the septic tanks from the south was uncovered and sampled at every 15 linear ft of piping for TPH, VOC, and SVOC analyses. A total of 274 tons of TPH-impacted soil was removed during excavation activities and the two pontoon tanks were sent offsite for metal recycling. Final confirmatory samples were below RIDEM Industrial Direct Soil Exposure Criteria.

1.4 Phase II EBS Follow-On Addendum II Investigations

Based on the data from the Phase II EBS (EA 1998a) and the Phase II EBS Follow-On Investigation (EA 1998b), the BCT recommended further investigation and sampling at Study Area 16. This additional field work at Study Area 16 was conducted during Fall/Winter 1998 in accordance with the Phase II Follow-On Investigation Work Plan Addendum II (EA 1998c). The objectives of the Study Area 16 investigation were:

• To further evaluate ground water beneath the former Creosote Dip Tank Area, the former FFTA, the septic tank formerly located at the southeast corner of Building E-107, and the earth ramp structure southeast of Building E-107;

- To evaluate subsurface soil beneath debris layers observed in test pits in the Creosote Dip Tank Area during the Phase II EBS Follow-On Investigation; and
- To evaluate the quality of water discharging from a seep near Building E-107 into Allen Harbor.

The objectives of the Phase II EBS Follow-On Addendum II investigation were addressed by collecting four subsurface soil samples, one surface soil sample, sixteen ground-water samples from eight locations, and one sample of a seep on the shore of Allen Harbor in the area of Building E-107.

1.4.1 Soil Sampling

In October/November 1998, during the Phase II EBS Follow-On Addendum II Investigation, EA collected four subsurface soil samples (28-SB-17, -18, -19, and -20) from the 2 ft interval beneath the observed or reported layer of debris (Figure 1-3). The sampling interval ranging from 8 ft to 12 ft bgs was selected based upon a review of the boring and test pit logs completed in this vicinity during previous investigations as well as visual observations (e.g., pulverized rock, wood chips, geotechnical results, etc.) recorded in the logs of the newly advanced soil borings. Subsurface soil samples were analyzed for TPH (Method 418.1), TPH-GRO (Method 8015M), TCL-VOC, TCL-SVOC, pesticides, PCB (Method OLM03.2), and Target Analyte List (TAL)-Metals (ILM04.0). One subsurface soil sample was collected from each of the following locations:

- In 28-SB-17, a sample was collected from the 2 ft interval below the debris layer observed in Test Pit 1 during the Phase II EBS Follow-On Investigation.
- In 28-SB-18, a sample was collected from the 2 ft interval below the debris layer observed in Test Pit 2 during the Phase II EBS Follow-On Investigation.
- In 28-SB-19, a sample was collected from the 2 ft interval below the debris layer observed in Test Pit 3 during the Phase II EBS Follow-On Investigation.
- In 28-SB-20, a sample was collected in the vicinity of previous soil borings 28-SB-07 and 28-SB-11 due to the subsurface debris that was observed at those locations. The sample was collected from the 2 ft interval below the observed debris layer (observed to be at depths ranging from 2 to 6 ft bgs at these locations during the Phase II EBS Follow-On Investigation).

In addition to the four subsurface soil samples, one surface soil sample (28-SS-21) was collected at the northern end of a drain pipe near a swale located southeast of the concrete ramp and bermed structure. The sample location was selected by EPA.

1.4.2 Ground-Water Sampling

In October/November 1998, sixteen ground-water samples were collected at the following eight locations using hydraulically driven sampling equipment (Figure 1-3):

- Original Creosote Dip Tank Area Three sample locations (28-GW-01, -02, and -03) were selected on a line perpendicular to the inferred ground-water flow direction and downgradient of the former creosote dip tank operations area and the location of the test pits excavated during the Phase II EBS Follow-On Investigation conducted in June 1997 (TP-1, TP-2, and TP-3 as shown in Figure 1-3). The ground-water flow direction was based upon the Basewide Ground-Water Study results (Stone & Webster 1997). The location 28-GW-03 was placed on the downgradient side of the wooden bermed structure. At each sampling location, one ground-water sample was collected from the shallow interval and one sample was collected at the 2 ft interval above refusal.
- Former FFTA Two ground-water sample locations (28-GW-04 and -05) were selected to further evaluate the former FFTA. At each sampling location, one ground-water sample was collected from the shallow interval and one sample was collected at the 2 ft interval above refusal. Location 28-GW-05 was also used to confirm the previous shallow ground-water data from nearby 28-GW-01A.
- South of Building E-107 One ground-water sample location (28-GW-06) was selected on the downgradient side of the trench that was excavated during the removal of the pipe that discharged from the septic tank at the southeast corner of Building E-107. At this location, one ground-water sample was collected from the shallow interval and one ground-water sample was collected at the 2 ft interval above refusal.
- Allen Harbor Shoreline One ground-water sample location (28-GW-07) was selected between the seep observed at the shore of Allen Harbor and the septic tank found at the southeast corner of Building E-107. At this location, one ground-water sample was collected from the shallow interval and one ground-water sample was collected at the 2 ft interval above refusal.
- <u>Earth Ramp Structure</u> One ground-water sample location (28-GW-08) was selected on the downgradient side of the earthen ramp (Figure 1-2) structure southeast of Building E-107. At this location, one ground-water sample was collected from the shallow interval and one ground-water sample was collected at the 2 ft interval above refusal.

According to the Phase II EBS Follow-On Investigation Work Plan Addendum II, if during the subsurface exploration a silt layer greater than 4 ft thick was encountered, a ground-water sample was to be collected directly above this unit. While attempting to collect a shallow and deep ground-water grab sample from each of borings 28-GW-03, -04,-05,-06, 07, -08, EA encountered running sands (i.e., saturated sands which flowed into the sampling rods) at a depth ranging between 15 ft and 20 ft bgs. The running sands prevented the collection of soil samples (thus no

soil logging) below this depth when the hole would no longer remain open. It was not possible to observe a silt layer greater than 4 ft thick; therefore, no ground-water sample could be collected above this unit.

The shallow ground-water sample was collected from a depth ranging from 6 ft to 12 ft bgs and the deep ground-water sample was collected from the 2-ft interval above equipment refusal. During the advancement of the direct-push explorations, the subcontractor determined refusal when the probe could no longer be advanced. The casing was then retracted 2 ft and a ground-water sample was collected.

The ground-water samples were analyzed for TCL-VOC, TCL-SVOC, pesticides (Method - OLM03.2), and dissolved (filtered) TAL-metals (Method ILM04).

1.4.3 Seep Sampling

On 15 October 1998, a sample was collected from the ground-water seep identified at the shore of Allen Harbor adjacent to the east side of Building E-107 (Figure 1-3). The grab sample was collected at the time of the lowest tide. The seep sample was analyzed for TCL-VOC, TCL-SVOC, pesticides (Method -OLM03.2) and dissolved (field-filtered) TAL-metals (Method ILM04.0).

2. FIELD INVESTIGATIONS AND PROCEDURES

This chapter outlines the procedures used at Study Area 16 for sampling subsurface soil, ground water, and the surface water seep during the Phase II EBS Follow-On Addendum II Investigation. Work was conducted in accordance with the Phase II EBS Follow-on Investigation Work Plan Addendum II (EA 1998c). Table 2-1 presents a summary of the sample locations, the number of samples collected, the analytical parameters, the analytical methods, and the Quality Assurance/Quality Control (QA/QC) samples collected.

The field procedures for previous phases were presented in the Phase II EBS Work Plan (EA 1995b) and the Phase II EBS Follow-On Investigation Work Plan (EA 1997).

2.1 GROUND-WATER SAMPLE COLLECTION

Ground-water samples were collected using hydraulically-driven sampling equipment (geoprobe) in accordance with the procedures outlined in the Phase II EBS Follow-On Investigation Work Plan Addendum II (EA 1998c).

2.2 SUBSURFACE SOIL SAMPLE COLLECTION

Subsurface soil samples were collected using a hydraulically-driven, soil sampling apparatus in accordance with the procedures outlined in the Phase II EBS Follow-On Investigation Work Plan Addendum II (EA 1998c).

2.3 SEEP SAMPLE COLLECTION

A sample from the seep at the edge of Allen Harbor was collected in accordance with the procedures outlined in the Phase II EBS Follow-On Investigation Work Plan Addendum II (EA 1998c).

2.4 SAMPLE PACKAGING AND SHIPPING, DESIGNATION AND LABELING

Sample packaging, handling, custody, and shipping procedures were conducted in accordance with the procedures outlined in the Phase II EBS Work Plan (EA 1995b).

2.5 SAMPLE DOCUMENTATION

Sample documentation procedures were conducted in accordance with the procedures outlined in the Phase II EBS Work Plan (EA 1995b).

2.6 QUALITY ASSURANCE/QUALITY CONTROL

Laboratory and field QA/QC procedures were conducted in accordance with the Phase II EBS Work Plan Addendum II Quality Assurance Project Plan (QAPP) (EA 1998c).

2.7 CHAIN-OF-CUSTODY FORMS

Chain-of-custody forms were completed in accordance with the procedures outlined in the Phase II EBS Work Plan (EA 1995b).

2.8 DECONTAMINATION PROCEDURES

Decontamination cleaning of the sampling equipment was conducted in accordance with the procedures outlined in the Phase II EBS Work Plan (EA 1995b), except that isopropyl alcohol was used in place of methanol.

2.9 WASTE HANDLING PROCEDURES

Waste handling was conducted in accordance with the procedures outlined in the Phase II EBS Work Plan (EA 1995b).

2.10 WASTE TESTING AND DISPOSAL

Investigative-Derived Waste (IDW) testing and disposal was conducted in accordance with RIDEM, Division of Site Remediation Policy Memo 95-01. IDW was characterized for final disposal using the sampling results from this investigation. IDW disposal was coordinated with that from the Phase II EBS Review Item 21 Site Investigation. IDW was removed by General Chemical Corporation in March 1999.

2.11 SURVEYING

The sampling locations within Study Area 16 were surveyed by a State of Rhode Island registered surveyor. The locations and elevations of the sampling points established during the Phase II EBS and Phase II EBS Follow-On Investigations (including soil borings, geoprobe soil and ground-water locations, and surface soil locations) were surveyed with respect to NAVD 29 and NAVD 27 datum locations in conjunction with the Rhode Island Plane Coordinate System (Appendix C-2)¹.

2.12 DATA INTERPRETATION

This section presents the type of field and laboratory analytical data collected, the screening criteria used to evaluate these data, and the data validation procedures that were employed.

¹ The correct survey data are presented in Appendix C-2. However, the aerial photos presented in this report are not available with an accurate match to the coordinate system used by the surveyors. Therefore, sample locations depicted in those figures were plotted based on the best available knowledge of the field work performed.

2.12.1 Field Screening Data

Field screening conducted during the Phase II EBS Follow-On Addendum II Investigation included HNu/PID monitoring, in accordance with the Health and Safety Plan, and jar headspace screening of soil.

2.12.2 Laboratory Analyses

Table 2-1 presents a summary of the number of samples collected, the analytical parameters, and the analytical methods used at Study Area 16. The number of field samples and required laboratory analyses were selected with the concurrence of the BCT, as presented in the Final Phase II EBS Follow-On Investigation Addendum II Work Plan (EA 1998c).

Surface and subsurface soil samples were collected and analyzed for TPH (Method 418.1), TPH-GRO (Method 8015M), TCL-VOC, TCL-SVOC, pesticides/PCB (Method OLM03.2), and TAL-metals (Method ILM04.0). Approximately 20% of the samples were also analyzed for TPH-GRO by modified Method 8015. Ground-water samples were analyzed for TCL-VOC, TCL-SVOC, pesticides (Method OLM03.2), and dissolved (filtered) TAL-metals (Method ILM04.0).

2.12.3 Screening Criteria for Data Analysis

The data collected at Study Area 16 from the previous investigations (Phase II EBS and Phase II EBS Follow-On investigation) and the recent Phase II EBS Follow-On Addendum II Investigation were evaluated with respect to selected regulatory guidance criteria and state cleanup criteria. The purpose of the screening was to qualitatively assess potential risks to human health and to evaluate the need for further response action (or no further action) at the EBS Review Item areas. The review items were being assessed for suitability for lease or transfer.

One challenge in summarizing the data sets from the various investigations is that screening criteria changed over the period during which evaluations were performed. In 1995, when the Phase II EBS work plan was approved by EPA/RIDEM, a set of screening criteria were selected that included RIDEM Remediation Regulation criteria and objectives, EPA Region III Risk Based Criteria (RBC) and EPA Generic Soil Screening Levels (SSL) for Transfer to Ground Water. Also, at the request of RIDEM, values for TPH quantified in different ways (as gasoline, as diesel, and as hydraulic fluid) were summed to present a total TPH value. This sum, which was not quantitatively accurate because the diesel and hydraulic ranges overlap significantly on the analytical chromatogram, presented a conservative, qualitative value that was compared to RIDEM cleanup criteria for TPH.

In 1996, the RIDEM Remediation Regulations changed. Direct Soil Exposure Criteria, Leachability criteria, and Ground-Water Objectives changed for some analytes, including TPH. Therefore, in subsequent EBS reports, the BCT requested that the new RIDEM criteria be applied, and that EPA Region IX RBC be used for screening criteria. Also during subsequent

investigations, the Navy did not quantify TPH in both the overlapping diesel and hydraulic ranges and, therefore, did not present the qualitative "total TPH" value.

The screening criteria used to evaluate the data in this report are presented in Tables 2-2 through 2-6. The criteria used are summarized in the following table:

TYPE	SCREENING CRITERIA USED
Federal	 EPA Region IX Preliminary Remediation Goals for residential and industrial soil [Risk-Based Criteria (RBC)] EPA Generic Soil Screening Levels (SSL) for migration to ground water based on Dilution/Attenuation Factors (DAF) of 1 and 20 from the EPA Soil Screening Guidance, Technical Background Document dated May 1996. Safe Drinking Water Act (SDWA) Maximum Contaminant Levels (MCL).
State	Ambient Water Quality Criteria (AWQC). PYDENA District Control of the Contr
State	 RIDEM Division of Site Remediation Residential and Industrial/Commercial Direct Soil Exposure Criteria from the Final Remediation Regulations (DEM-DSR-01-93) as amended August 1996 (effective 4 September 1996).
	 RIDEM Division of Site Remediation Class GB Leachability Criteria (RIDEM 1996) from the Final Remediation Regulations (DEM-DRS-01-93) as amended August 1996 (effective 4 September 1996).
	 RIDEM Division of Site Remediation Class GB Ground-Water Objectives (RIDEM 1996) from the Final Remediation Regulations (DEM-DSR-01-93) as amended August 1996 (effective 4 September 1996).
Site-Specific	NCBC Davisville background data for metals in surface soil (TRC 1994).

Study Area 16 is located in a "GB" ground-water area. RIDEM has classified ground water at NCBC Davisville as "GA", "GAA", "GAA-NA", or "GB." Ground-water resources classified as "GA" or "GAA" are those which are assumed by RIDEM to not require treatment prior to drinking. Non-attainment (e.g., "GAA-NA") areas are those areas that have known or presumed pollutant concentrations greater than the ground-water quality standards for the applicable classification. Ground-water resources classified as "GB" are those which are assumed by RIDEM to require treatment prior to drinking.

The Study Area 16 data were evaluated with respect to the screening criteria as follows:

- Ground Water Analytical data from ground-water samples were compared with the RIDEM GB Ground-Water Objectives. Although ground water beneath Study Area 16 is unlikely to be used as a drinking water supply, the ground-water sample data were also compared to Federal drinking water MCL.
- Seep Water Analytical data from the seep sample collected at the Allen Harbor shoreline were compared to the chronic/marine AWQC.
- Soil for Direct Exposure Analytical data from soil samples were compared to RIDEM Residential and Industrial/Commercial Direct Soil Exposure Criteria, or the EPA Residential

and Industrial RBC if a RIDEM Direct Soil Exposure Criterion was not available for a specific analyte.

Soil for Leachability to Ground Water- The soil data were also compared to the RIDEM Class GB Leachability criteria, or the EPA Generic SSL for Transfer to Ground Water if RIDEM criteria were not available for a given analyte (e.g., SVOC, inorganics). For the SSL evaluations, both the DAF-1 and the DAF-20 criteria were considered; however, the DAF-20 criteria are considered to be more appropriate for the conditions at Study Area 16. EPA's Generic SSL were derived using default values in standardized equations. DAF-20 criteria account for the natural processes that reduce chemical constituent concentrations in the subsurface. DAF-1 criteria assume no dilution or attenuation between the source and a receptor well. DAF-1 values can be appropriate for sites where little or no dilution or attenuation of soil leachate concentrations is expected (e.g., sites with shallow water tables. fractured media, karst topography, or source size greater than 30 acres). Therefore, the DAF-20 values are more appropriate for Study Area 16 given the GB ground-water classification. the silty soils, and the lack of ground-water receptors. Although DAF-1 criteria were considered in the text for completeness, recommendations for further action were not based on these criteria. Finally, if the concentration of an inorganic constituent exceeded any of these criteria, then the concentration was also compared to NCBC Davisville background values for surface soil (subsurface soil background data are not available).

2.12.4 Data Validation

Third-party validation of the EA Laboratory ground-water and soil sample results for the Phase II EBS Follow-on Investigation Addendum II samples (Fall 1998) was performed by a qualified subcontractor to EA. Data validation summaries are presented in Appendix H of the EBS Report. Data validation was performed in accordance with EPA Region I guidance (EPA 1988, 1989). The data was validated using the older EPA guidelines to maintain consistency with previous investigative data at the site. Validation of soil and ground-water data collected during Summer 1997 is presented in the Phase II EBS Follow-On Investigation Report (EA 1998b).

3. PHYSICAL CHARACTERISTICS

This chapter describes the local and regional physical characteristics of Study Area 16. Descriptions of subsurface physical features at Study Area 16 are based upon the field investigations, including soil borings and geoprobe installations. A description of the regional geologic and hydrogeologic setting is provided, along with specific characteristics pertaining to Study Area 16.

3.1 PHYSIOGRAPHY

NCBC Davisville is located on the Seaboard Lowland coastal belt of the New England physiographic province (Fenneman 1938), and within the Narragansett Basin of metamorphosed sedimentary rocks of Pennsylvanian age. The surface topography near NCBC Davisville (from Quonset Point to a point approximately five miles west of Quonset Point) exhibits over 150 ft of relief in a series of north-south trending valleys and ridges (Williams 1964). These valleys were developed by river and stream erosion and deepened by glacial activity. Surface drainage is not well developed, and swamps and marshes are extensive. Streams are small and, in most places, bordered by swamps.

Nearly all the surficial deposits are of glacial origin deposited during the Wisconsin Glacial Stage. The glacial deposits record a single invasion of the ice sheet and are only slightly modified by post-glacial weathering and erosion (Schafer 1961). Portions of the land surface at NCBC Davisville have undergone significant modification, e.g., hills were leveled and depressions filled in, as part of the original construction of the base as well as during military training operations

The topography at Study Area 16 has a gradual slope from the south down to sea level at the Allen Harbor shoreline. In the past, the site was extensively bulldozed, but now has a thick vegetative cover of shrubs and grasses. No freshwater wetlands are located in Study Area 16. A partially paved access road encircles the immediate area. A small paved area is located within the site as well as a wooden bermed structure and an earth ramp structure (Figure 1-2).

3.2 CLIMATE CHARACTERIZATION

Given the coastal proximity of NCBC Davisville, weather patterns are continuously modified by the dynamic effects of the Narragansett Bay and the Atlantic Ocean. The average annual wind speed over the area is 10.6 miles per hour (mph) with a prevailing southwesterly direction. In the winter, the average temperature is 30°F and average daily minimum temperature is 20°F. In the summer, the average temperature is 70°F and average daily maximum is 80°F.

The average annual precipitation for the area is 45.32 in., as measured for the period of 1951 through 1980. Historically, June has been the driest month with an average of 2.79 in. of precipitation, whereas December, averaging 4.47 in., has been the wettest.

3.3 SURFACE WATER HYDROLOGY

3.3.1 Regional Surface Water

The State of Rhode Island is divided into five drainage basins: the Narragansett Bay Basin, the Pawtucket River Basin, the Rhode Island Coastal Basin, the Thames River Basin, and the Massachusetts Coastal Basin. NCBC Davisville lies within the Narragansett Bay Basin, the largest and most hydrogeologically significant basin in the state. The Narragansett Bay Basin covers approximately two-thirds of the state and includes a system of waterways that discharge into the Atlantic Ocean between Point Judith and Sakonnet Point. The Narragansett Bay Basin includes Narragansett Bay and its entire shoreline, the drainage system of three major rivers (Taunton, Blackstone, and Pawtuxet), and a number of small rivers and streams that drain into Narragansett Bay (USDA 1981). Within each drainage basin, smaller sub-basins may be defined based on significant streams, tributaries, and reservoirs.

Rhode Island's abundant precipitation, numerous perennial streams, lakes, and reservoirs provide a significant surface supply of fresh water for the states' industry and domestic consumption. Additionally, three primary aquifers provide fresh ground water for the state. In 1985, the total freshwater withdrawals in Rhode Island were 147 million gallons per day. Of this, approximately 69% was for domestic and commercial use, 27% was for industrial and mining use, and 4% was for agricultural use. 81.5% of the fresh water was obtained from surface water sources and the remaining 18.5% was from ground water. The Scituate Reservoir in Providence County accounts for more than 80% of the reservoir storage capacity in Rhode Island. Approximately 76% of the State's population receives its drinking water from the Rhode Island reservoir system. Approximately 24% obtain potable water from public supply wells (USGS 1989). There are also an unknown number of private residential water supply wells.

The quality of Rhode Island's surface water is affected primarily by land use and commercial factors such as urban runoff, point-source discharge, and municipal/industrial wastewater discharge (USGS 1993). In sparsely populated areas, stream water quality is affected mainly by impurities in precipitation and by constituents released from the soil and rock. Because the bedrock, glacial deposits, and soil in Rhode Island are composed largely of insoluble silica minerals, concentrations of dissolved inorganic constituents are low. Surface water in Rhode Island is soft [hardness less than 60 milligrams per liter (mg/L) of calcium carbonate] and slightly acidic (pH values less than 7).

3.3.2 Local Surface Water

No surface water bodies or wetlands are present at Study Area 16. Allen Harbor is located adjacent to Study Area 16 to the north/northeast. Overland runoff at Study Area 16 drains to Allen Harbor, which has tidal exchanges along with Narragansett Bay.

3.4 GEOLOGY

3.4.1 Regional Geology

NCBC Davisville is located within the Narragansett Basin, a complex structural syncline approximately 12 miles wide and with up to 12,000 ft of accumulated sediment deposited within this feature. The Narragansett Basin s western limit is approximately three miles west of NCBC Davisville, and its eastern edge is close to Fall River, Massachusetts. Each of the NCBC Davisville sites, with the exception of Camp Fogarty, overlie a portion of the Narragansett Basin. The bedrock is overlain by various glacial deposits up to 200 ft thick that have left the basin relatively flat compared to the surrounding areas (Schafer 1961). According to Williams (1964) and USDA (1981), the principal bedrock unit in the vicinity of NCBC Davisville is the Pennsylvanian age undifferentiated Rhode Island Formation. The original sedimentary rocks were fine- to coarse-grained sandstone and shale. Throughout the Rhode Island Formation, these sedimentary rocks have been metamorphosed into various types of meta-sandstone (quartzite), phyllite, gneiss, and schist. The amount of metamorphism increases from north to south across the formation. The color of the rock varies from light to dark gray, and greenish. The Rhode Island Formation is further characterized by cross-bedding and irregular, discontinuous beds. In the vicinity of NCBC Davisville, the depth to bedrock ranges from approximately 30 ft above ground surface to nearly 100 ft bgs.

The unconsolidated Quaternary sediments overlying bedrock were deposited by glacial activity during the Pleistocene epoch. The final deposition of glacial material occurred during the Wisconsin glacial stage 10,000 to 12,000 years ago. As the glacier front melted and receded, unconsolidated till, glacio-fluvial and glacio-lacustrine sediments were deposited. Till, a dense, non-stratified, heterogeneous mixture of sand, silt, clay, and gravel, was emplaced on top of bedrock as the advancing glaciers scraped, ground, crushed, and then deposited the material passively on bedrock as ablation till.

As streams of melt water flowed from the retreating glaciers, sediment from the melting ice was entrained, transported downstream, and deposited as well-sorted sand or gravel (glacio-fluvial deposits). Fine-grained silt and clay were transported by the streams into glacial lakes, where they were settled on the lake bottom (glacio-lacustrine deposits). The thickness of the glacial deposits is quite variable, although generally thin. They range from less than 10 ft in thickness at the higher elevations (nonexistent where bedrock is exposed) to more than 100 ft thickness in portions of the bedrock valleys (Rosenshein et al. 1968).

3.4.2 Site Geology

The results of the field investigations and previous investigations show that the shallow subsurface geology at the site is characterized by unconsolidated fine-grained sedimentary deposits. Figure 3-1 shows locations of cross sections A-A' and B-B'. Figures 3-2 and 3-3 depict Geologic Cross-Sections A-A' and B-B', respectively, which present the interpreted

generalized distribution and thickness of the shallow geological units identified at the site. Cross Section A-A' extends from the west (28-SB-01B) to the east (28-GW-08). Cross Section B-B' extends from the southwest (28-SB-16) to the northeast (28-GW-07), approximately along the interpreted direction of ground-water flow at the site. Soil boring logs for Review Item 28 are presented in: Appendix A-1 (EBS Phase II); Appendix B-1 (EBS Phase II Follow-On); and Appendix C-1 (EBS Phase II Follow-On Addendum II).

In general, the unconsolidated sedimentary deposits consist of the following (from shallow to deep):

- Silt to medium sand unit This upper unit consists of a brown to dark gray silt to medium sand with minor amounts of gravel noted in several locations. The unit appears to consist of fill material placed during past construction activities.
- Fine to medium sand unit This unit consists of a tan to dark brown to gray fine to medium sand containing local deposits of silt and/or gravel. Refuse material was noted in several borings in this layer that also may have been placed as part of past construction activities.
- Medium to coarse gravelly sand or peat unit A medium to coarse gravelly sand unit was identified in the southern to central portion of the site and may represent native material. Further to the north, a variation of the first two units are underlain by an approximate 2 ft thick unit of organic material interpreted to be a layer of peat and part of the native material at the site. This layer may represent the original surface of the site prior to Naval construction activities. The peat unit is generally found from 28-SB-14 to 28-GW-07.
- Silt unit In the northern portion of the site, a layer of black to dark gray silt to very fine sand with a minimum thickness of 2 ft is present below the peat layer.
- Very fine to fine sand This unit in the northern portion of the site consists of gray to olive gray very fine to fine sand with local deposits of silt to coarse sand.
- Silt with trace clay Beneath the medium to coarse gravelly sand in the central portion of the site lies a unit of black silt with trace clay, which is approximately 6 ft thick at 28-SB-14 to 28-SB-15.
- Coarse sand with gravel At soil boring 28-SB-14, which was the deepest soil boring during this investigation, a 3 ft thick layer of brown coarse sand with coarse gravel was observed beneath the black silt with trace clay. This unit is at a depth of approximately 32 ft bgs.
- Black silt to medium sand A layer of black silt to medium sand with minor coarse gravel/cobbles was observed beneath the coarse sand with gravel unit at 28-SB-14. This unit extends from approximately 35 ft bgs to the bottom of the soil boring at 44 ft bgs.

No geologic information was obtained below the fine to medium sand unit in the northern portion of the site (Figure 3-3). Refusal was encountered in the northern portion of the site at depths of 29 to 46 ft bgs.

3.5 HYDROGEOLOGY

3.5.1 Regional Hydrogeology

Ground water in Rhode Island is present in two general types of aquifers: unconsolidated Pleistocene glacial deposits and consolidated Paleozoic bedrock. The ground water within the glacial deposits is divided into two general hydrologic units; the stratified drift unit (glacio-fluvial deposits) and the till unit. The stratified drift unit consists of interbedded lenses of gravel, sand and silt. The till unit consists of boulders, gravel, sand, silt and clay. Both aquifers constitute important water resources for the state. Most domestic wells in Rhode Island obtain water from the bedrock aquifer (USGS 1988).

The quality of ground water in most of Rhode Island is suitable for human consumption with little or no treatment. Typically, the ground water has total dissolved solids concentrations less than 200 mg/L, is soft (hardness less than 60 mg/L of calcium carbonate), is slightly acidic (pH 5.5 to 7.0), and has a temperature of 10 to 12 °C. The percentage of the State's land with non-potable ground water is relatively small. Although many areas have measurable degradation of water quality, the amount of degradation has not impaired the water quality for human consumption and other major uses. Because the ground water occurs mostly under unconfined conditions with a depth to water less than 20 ft bgs, the ground water in Rhode Island is often vulnerable to contamination and quality degradation (USGS 1988).

3.5.2 Local Hydrogeology

NCBC Davisville lies within the Hunt River and Coastal drainage basins with all stream and river flow eventually discharging into Narragansett Bay. During most of the year, a part of the stream flow consists of water discharged from retention storage in natural and constructed impoundments. The remaining flow is from direct runoff of precipitation and from base flow runoff consisting largely of ground-water discharge.

As interpreted from water level measurements collected during a Basewide Ground-Water Study, the ground-water flow direction in this portion of Zone 3 is northeast toward Allen Harbor (Stone & Webster 1995). Based on water level data collected from piezometers during that study, the depth to ground water is approximately 10 to 11 ft bgs near 28-SB-16 (based on data from piezometer PGU-Z4-13) and approximately 5 to 6 ft bgs near 28-SB-20 (based on data from piezometer PGU-Z3-09). Depth to the water table continues to decrease further to the north until reaching Allen Harbor.

RIDEM has classified ground-water at this location as "GB" (assumed by RIDEM to require treatment prior to drinking).

4. INVESTIGATION RESULTS

This chapter presents the results of the investigations conducted at Study Area 16. As outlined in Section 2.12.3, the key screening criteria used to evaluate the data in this chapter are the RIDEM Residential Direct Soil Exposure Criteria, the RIDEM Industrial/Commercial Direct Soil Exposure Criteria, the RIDEM GB Leachability Criteria, the Federal MCL, and the Federal marine chronic AWQC because constituent concentrations above these criteria may drive regulatory actions. The EPA Region IX RBC and SSL DAF 20 were used if there were no RIDEM criterion for a given analyte.

4.1 PREVIOUS INVESTIGATIONS

4.1.1 Soil Removal Action

In 1992, Halliburton NUS completed a soil removal action in a spill area around the upended creosote dip tank. The removal action included four phases and was intended to remove soil containing elevated concentrations of PAH. During the first three phases of the removal action, PAH were detected in soil down to approximately 4 ft bgs. The final phase consisted of the excavation of a PAH "hot spot" in soil (not considered to be part of the release) located in the area of the upended tank. At that time, a "hot spot" was defined as soil boring sample concentrations that exceeded job-specific RCRA Media Cleanup Standards, based on a residential usage scenario. The conclusion of the Halliburton NUS report was that, although some PAH remained, the associated human health risk under a residential usage scenario (1.3x10⁻⁵) was within EPA's acceptable target risk range (10⁻⁴ to 10⁻⁶).

4.1.2 Phase II EBS Investigation

In Spring/Summer 1996, during the Phase II EBS (EA 1998a), soil borings 28-SB-01A through - 01D (Figure 1-3) were installed in the northwest portion of the site investigated previously by Halliburton NUS. Soil samples were collected from 0 to 2 ft bgs and from 2 to 4 ft bgs at each location and were analyzed for PAH. The PAH detected in samples from the Phase II EBS Investigation are summarized in Table 4-1.

The evaluation of the resulting data during the Phase II EBS confirmed the presence of low concentrations of PAH in soil. In particular, the concentration of benzo(a)pyrene (1,400 J μ g/kg) in surface soil sample 28-SB-01B exceeded the RIDEM Industrial/Commercial Direct Soil Exposure Criterion (800 μ g/kg).

Evaluation of these data in accordance with the procedure outlined in Section 2.13.3 of this Comprehensive Report/SASE indicates that 1 of 4 surface soil samples and 2 of 4 subsurface soil samples contained benzo(a)pyrene above the RIDEM Industrial Direct Soil Exposure Criterion of 800 μ g/kg. Although no RIDEM GB Leachability Criteria are available for PAH, benzo(a)anthracene (2,700 J μ g/kg) exceeded the DAF 20 criterion (2,000 mg/kg) in 28-SB-01D-

2-4 (duplicate sample only). DAF 1 criteria were exceeded by benzo(a)anthracene (5 of 8 samples), benzo(b)fluoranthene (5 of 8 samples), benzo(a)pyrene (3 of 8 samples), indeno(1,2,3-cd)pyrene (1 of 8 samples), and dibenzo(a,h)anthracene (3 of 8 samples). RIDEM Residential Direct Soil Exposure Criteria were exceeded by benzo(a)anthracene (3 of 8 samples), chrysene (4 of 8 samples), benzo(b)fluoranthene (3 of 8 samples), benzo(k)fluoranthene (1 of 8 samples), benzo(a)pyrene (3 of 8 samples), and indeno(1,2,3-cd)pyrene (1 of 8 samples), dibenzo(a,h)anthracene (1 of 8 samples), and benzo(g,h,i)perylene (2 of 8 samples).

For Phase II EBS Review Item 85, EA installed two soil borings with continuous split barrels in the approximate location of the former tank on the southwest side of Building E-107, where previously elevated total VOC readings had been obtained by NUS. The 0 to 2-ft and 2 to 4-ft intervals from EBS-85-SB-1 and the 2 to 4-ft and 8 to 10-ft intervals from EBS-85-SB-02 were submitted to the laboratory for TCL VOC analyses. Acetone (non-detect to 63 μ g/kg), 2-butanone (52-99 μ g/kg), and toluene (non-detect to 36 μ g/kg) were detected in the four soil samples collected for the investigation of this Review Item. The concentrations of acetone (63 μ g/kg) and toluene (36 μ g/kg) in sample EBS 85-SB-01 (0-2 ft) were below the RIDEM Residential and Industrial/Commercial Direct Soil Exposure Criteria. VOC concentrations were also below EPA and RIDEM soil leachability criteria. No further action was recommended for EBS Review Item 85.

4.1.3 Phase II EBS Follow-On Investigation

During Summer 1997, the Phase II EBS Follow-On Investigation (EA 1998b) included a review of low altitude oblique angle aerial photographs, installation of soil borings and test pits in the creosote dip tank area and the alleged FFTA, a magnetometer survey to assess whether USTs were still present in the ground west of and adjacent to Building E-107, test pit excavations to investigate the magnetic anomalies, and ground-water sampling at the FFTA.

The analytes detected in samples from the Phase II EBS Follow-On Investigation are summarized in Table 4-2. These data were compared to federal and state criteria (as outlined in Section 2.13.2) and are summarized below.

Ground-Water

VOC were not detected in the ground-water sample (28-GW-01A) or duplicate (28-GW-01A-duplicate) at the suspected FFTA. The concentration of bis(2-ethylhexyl)phthalate (the only SVOC detected) was below the Federal MCL as well as the RIDEM Class GB ground-water criterion.

Surface Soil Samples (0 to 2 ft bgs)

 Constituent concentrations in surface soil samples were below RIDEM's Commercial/ Industrial Direct Soil Exposure Criteria, the RIDEM Class GB Leachability Criteria, and the DAF 20 criteria.

- TPH concentrations in five surface soil samples (28-SB-06, -07, -08, -09, and -11) exceeded the respective RIDEM Residential Direct Soil Exposure Criterion.
- Concentrations of various VOC and SVOC in samples 28-SS-01, 28-SB-03, 28-SB-04, 28-SB-05, 28-SB-06, 28-SB-07 (and duplicate), 28-SB-08 (duplicate only), and 28-SB-14 exceeded the DAF 1 criteria. This included acetone, methylene chloride, carbazole, benzo(a)anthracene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene.

Subsurface Soil Samples (greater than 2 ft bgs)

- Concentrations of acetone exceeded the DAF-1 criterion in 5 of 16 subsurface soil samples. In sample 28-SB-06-8-10, acetone also exceeded the DAF-20 criterion.
- Otherwise, only 28-SB-08-2-4 contained constituents above any screening criteria. In 28-SB-08-2-4, DAF-1 were exceeded by concentrations of benzo(a)anthracene (200 J μg/kg) and benzo(b)fluoranthene (240 J μg/kg). In addition, TPH exceeded the RIDEM Residential Direct Soil Exposure Criterion (500 mg/kg) in 28-SB-08-2-4 (810 mg/kg).
- No constituents exceeded the RIDEM Industrial Direct Soil Exposure Criteria.

4.2 PHASE II EBS FOLLOW-ON ADDENDUM II

As described in Section 1.4, the objectives of the Phase II EBS Follow-On Investigation Work Plan Addendum II (EA 1998c) were addressed by collecting four subsurface soil samples, one surface soil sample, sixteen ground-water samples from eight locations, and one sample of a seep on the shore of Allen Harbor in the area of Building E-107. Samples were collected during Fall/Winter 1998.

4.2.1 Soil

A summary of detected analytes in the soil samples collected at Study Area 16 during the Phase II EBS Follow-On Addendum II investigation is presented in Table 4-3. These data were compared to federal and state criteria (as outlined in Section 2.13.2) and are summarized below.

Surface Soil

- Various inorganics and SVOC were detected in the one surface soil sample (28-SS-21).
 VOC, pesticides, and PCB were not detected in the surface soil sample.
- No analytes detected in the surface soil sample exceeded RIDEM Industrial/Commercial Direct Soil Exposure or DAF 20 Criteria.
- Only chromium (5.5 mg/kg), nickel (7.3 mg/kg), and arsenic (2.2 mg/kg) exceeded the DAF 1 criteria (2, 7, and 1 mg/kg, respectively). Nickel only slightly exceeded the criterion and, although the analysis was for total chromium, the DAF 1 criterion pertains to chromium VI only. The concentrations of chromium and arsenic were within the NCBC background levels for surface soil (ND to 9.6 mg/kg and 0.59 to 8.1 mg/kg, respectively). The detected

- concentration of nickel slightly exceeded the NCBC background range for surface soil (ND to 5 mg/kg). The detected concentrations of SVOC did not exceed DAF 1 criteria.
- Only arsenic (2.2 mg/kg) slightly exceeded its RIDEM Residential Direct Soil Exposure
 Criterion (1.7 mg/kg); however, the concentration of arsenic was within NCBC background
 levels for surface soil. The detected concentrations of SVOC did not exceed RIDEM
 Residential Direct Soil Exposure Criteria.

Subsurface Soil

- Various inorganics (4 of 4 samples), VOC (1 of 4 samples), and TPH (1 of 4 samples) were detected in subsurface soil samples. SVOC, pesticides, and PCB were not detected in the subsurface soil samples. Of the VOC analyses, only a low concentration of acetone (20 μg/kg) was detected in one sample (28-SB-18-10-12).
- No analytes detected in subsurface soil samples exceeded RIDEM Industrial/Commercial Direct Soil Exposure Criteria.
- Only antimony in 28-SB-20-8-10 (6.4 J mg/kg) exceeded its DAF 20 criterion (5 mg/kg).
- Antimony (1 of 4 samples), arsenic (4 of 4 samples), barium (1 of 4 samples), cadmium (1 of 4 samples), chromium (4 of 4 samples), and nickel (3 of 4 samples) exceeded the DAF 1 criteria. Except for arsenic, these analytes also exceeded NCBC Davisville background concentration ranges for surface soil in one or more samples (subsurface background concentrations have not been determined). Although the analysis was for total chromium, the DAF 1 criterion pertains to chromium VI only. The detected concentrations of VOC and TPH did not exceed DAF 1 criteria.
- Arsenic (3 of 4 samples), beryllium (2 of 4 samples), and lead (1 of 4 samples) exceeded their respective RIDEM Residential Direct Soil Exposure Criteria. Of these detected concentrations, only lead (339 mg/kg) in 28-SB-20-8-10 exceeded NCBC Davisville background concentration ranges for surface soil (53.8 mg/kg). The detected concentrations of VOC and TPH did not exceed RIDEM Residential Direct Soil Exposure Criteria.

4.2.2 Ground Water and Seep Water

A summary of detected analytes in the ground-water and seep samples collected at Study Area 16 during the Phase II EBS Follow-On Addendum II investigation is presented in Table 4-4. These data were compared to federal and state criteria (as outlined in Section 2.13.2) and are summarized below.

Seep

- Various inorganics, SVOC, and pesticides were detected in the seep sample. VOC were not detected in the seep sample.
- Lead (29.3 μ g/L), dieldrin (0.2 μ g/L), endrin (0.0039 J μ g/L), heptachlor epoxide (0.2 J μ g/L), and phenanthrene (7 μ g/L) exceeded the marine chronic AWQC.

Ground Water

- Various VOC (13 of 16 samples), SVOC (4 of 16 samples), pesticides (8 of 16 samples), and inorganics (16 of 16 samples) were detected in ground-water samples.
- The detected concentration of trichloroethene (TCE) (570 J μ g/L) only slightly exceeded the RIDEM GB Ground-Water criteria (540 μ g/L) in only 1 of 16 samples.
- TCE and vinyl chloride concentrations exceeded MCL in 4 of 16 samples and 5 of 16 samples, respectively. TCE concentrations ranged from non-detect to 570 μ g/L (as compared to an MCL of 5 μ g/L). Vinyl chloride concentrations ranged from non-detect to 10 μ g/L (as compared to an MCL of 2 μ g/L).

5. CONCLUSIONS AND RECOMMENDATIONS

This SASE report summarizes the findings of four Navy investigations conducted at IR Program Study Area 16, which has been designated the Creosote Dip Tank and Fire Fighting Training Area. In 1992, Halliburton NUS conducted a removal action at an upended tank in an area where creosote dipping reportedly took place. The Study Area was expanded and further investigated by EA as part of the EBS program in the Phase II EBS, Phase II EBS Follow-On, and Phase II EBS Follow-On Addendum II investigations. Data were compared to risk-based and regulatory screening criteria to determine whether the property could be approved for unrestricted residential or commercial/industrial use. Based on the findings of these studies, EA recommends that the Navy conduct a Remedial Investigation to further assess CVOCs in site ground water.

5.1 CONCLUSIONS

Figures 5-1 through 5-5 summarize the chemical constituents detected in soil, ground-water, and seep samples at concentrations that exceed the key screening criteria, as outlined in Section 2.12.3. The key screening criteria used to summarize the results are the RIDEM Residential Direct Soil Exposure Criteria, the RIDEM Industrial/Commercial Direct Soil Exposure Criteria, the RIDEM GB Leachability Criteria, and the Federal MCL and AWQC because constituent concentrations above these criteria may drive regulatory actions. The EPA Region IX RBC and SSL DAF-20 criteria were used if there was not a RIDEM criterion for a given analyte. Figures 5-1 through 5-5 include data from the Phase II EBS, Phase II EBS Follow-On, and Phase II EBS Follow-On Addendum II investigations.

5.1.1 Soil

- As shown in Figure 5-1, various SVOC (primarily PAH) and inorganic constituents (arsenic, lead, and beryllium) were detected in soil samples at concentrations exceeding the RIDEM Residential Direct Soil Exposure Criteria or EPA Region IX Residential RBC. The PAH were detected in soil at the original Creosote Dip Tank Area. The inorganics were detected in four samples located throughout the site.
- As shown in Figure 5-2, only one constituent [benzo(a)pyrene maximum concentration of 2,700 ug/kg] detected in soil samples exceeded the RIDEM Industrial/Commercial Direct Soil Exposure Criteria or EPA Region IX Industrial RBC at Study Area 16. The elevated concentrations of benzo(a)pyrene were detected at two locations (28-SB-01A and 28-SB-01D) within the original Creosote Dip Tank Area.
- As shown in Figure 5-3, three constituents detected in soil samples exceeded the RIDEM GB Leachability Criteria or SSL DAF-20 criteria at Study Area 16. This included benzo(a)anthracene (2,700 J ug/kg) in 28-SB-01D-2-4, acetone (75,000 J ug/kg) in 28-SB-06-8-10, and antimony (6.4 J mg/kg) in 28-SB-20-8-10.

• Results from soil samples collected at locations where solid waste-type debris had been noted in test pits or soil borings were comparable to other soil results in the study area. Significant impact to soil from this debris was not identified.

5.1.2 Ground Water

- As shown in Figure 5-4, only TCE detected in the deep ground-water sample from 28-GW-04 exceeded RIDEM's GB Ground-Water Objective.
- As shown in Figure 5-5, five of the eight ground-water sampling locations included within the Phase II EBS Follow-On Addendum II Investigation contained TCE and/or vinyl chloride concentrations above Federal MCL. Concentrations of both TCE and vinyl chloride were highest (570 J and 10 ug/L, respectively) within the paved area suspected to be the location of the former FFTA (at 28-GW-04). Given the variations in the elevations at which ground-water samples were collected, however, the shape or extent of the area impacted by chlorinated VOC cannot be determined from the available data.

5.1.3 Seep

• As shown in Figure 5-4, lead, dieldrin, endrin, heptachlor epoxide, and phenanthrene were detected in the seep sample collected east of Building E-107 at concentrations above marine chronic AWQC. Except for phenanthrene, the concentrations were higher in the seep sample 28-SP-1 than in the sample from upgradient ground-water location 28-GW-07. Therefore, the constituents detected in 28-SP-01 may be from a source other than Study Area 16 ground water. Based on the Draft Final Marine Ecological Risk Assessment (EA 1996) for Allen Harbor, potential offsite sources may exist including the two marinas and storm water outfalls from nearby parking lots.

5.1.4 UST Area/Septic Tanks

- In the former UST area west and south of Building E-107, an extensive program of excavation in the areas of detected magnetic anomalies uncovered no evidence of remaining USTs.
- The two steel pontoon tanks adjacent to Building E-107 were cleaned and removed. TPH-impacted soil surrounding the pontoon tanks was also removed. A total of 274 tons of soil was removed during excavation activities and the two pontoon tanks were sent offsite for metal recycling. Final confirmatory samples in this area were below RIDEM Industrial Direct Soil Exposure Criteria. Closure reports have been finalized for the UST area and the pontoon tanks (FWENC 1998a, 1998b).

5.2 **RECOMMENDATIONS**

EA recommends that a Remedial Investigation focused on ground water be conducted at Study Area 16. The RI should address the following objectives.

- Characterize the hydrogeology (stratigraphy and ground-water flow conditions) at the site;
- Further evaluate the horizontal and vertical extent of the CVOCs in ground water;
- Identify the source of CVOC in ground water; and
- Evaluate risk to human health from site constituents.

Additional remedial action is not anticipated for soil, based on the low number and distribution of exceedences of residential or commercial/industrial screening criteria. However, the available soil data should be evaluated using a tiered, streamlined risk assessment approach to ensure protection of human health under the most likely exposure scenarios.

An additional recommendation from EPA and the Technical Advisory Group (TAG) is to include an evaluation of risk to the environment from site constituents. An additional recommendation from the TAG is to include SVOC and metals to the analytical program for soil and ground-water samples. The EPA also recommended that at least the first round of soil and ground-water samples be analyzed for the full TCL/TAL constituents during the RI. An additional recommendation from RIDEM is to include further assessment of the site soils in the RI.

REFERENCES

- EA Engineering, Science, and Technology. 1995a. Final Basewide Environmental Baseline Survey, Naval Construction Battalion Center, Davisville, Rhode Island. October.
- EA Engineering, Science, and Technology. 1995b. Final Phase II Environmental Baseline Survey Work Plan, Naval Construction Battalion Center, Davisville, Rhode Island. December.
- EA Engineering, Science, and Technology. 1996. Draft Final Allen Harbor Landfill and Calf Pasture Point Marine Ecological Risk Assessment, Naval Construction Battalion Center, Davisville, Rhode Island. February.
- EA Engineering, Science, and Technology. 1997. Final Phase II Environmental Baseline Survey Follow-On Investigation Work Plan, Naval Construction Battalion Center, Davisville, Rhode Island. July.
- EA Engineering, Science, and Technology. 1998a. Final Phase II Environmental Baseline Survey Report, Naval Construction Battalion Center, Davisville, Rhode Island. February.
- EA Engineering, Science, and Technology. 1998b. Final Phase II Environmental Baseline Survey Follow-On Investigation Report, Naval Construction Battalion Center, Davisville, Rhode Island. March.
- EA Engineering, Science, and Technology. 1998c. Final Phase II EBS Follow-On Investigation Work Plan Addendum 2, Naval Construction Battalion Center, Davisville, Rhode Island. September.
- Environmental Protection Agency. 1988. Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. Modified November.
- Environmental Protection Agency. 1989. Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses. Modified February.
- Foster Wheeler Environmental Corporation. 1998a. Final Contractor's Close-Out Report for the Removal Actions at Various Septic Tank Related Environmental Baseline Survey (EBS) Review Items, Naval Construction Battalion Center, Davisville, Rhode Island. May.
- Foster Wheeler Environmental Corporation. 1998b. Final Contractor's Close-Out Report for the Removal Actions at Various Building and Area Related Environmental Baseline Survey (EBS) Review Items, Naval Construction Battalion Center, Davisville, Rhode Island. May.
- Halliburton NUS Corporation, 1994. UST Remedial Investigation Report, Naval Construction Battalion Center, Davisville, Rhode Island. December.

- Rosenshein, J.S., J.B. Gonthiel, and W.B. Allen. 1968. Hydrologic Characteristics and Sustained Yield of Principal Groundwater Units, Potowomut-Wickford Area, Rhode Island. USGS Water Supply Paper 1775.
- Schafer, J.P. 1961. Surficial Geology of the Wickford Quadrangle, Rhode Island. Map GQ-136. U.S. Geological Survey, Reston, Virginia
- Stone and Webster Environmental Technology & Services. 1997. Basewide Ground-Water Study, Naval Construction Battalion Center, Davisville, Rhode Island.
- U.S. Department of Agriculture (USDA) Soil Conservation Service. 1981. Soil Survey of Rhode Island. US Department of Agriculture, Soil Conservation Service, in cooperation with Rhode Island Experiment Station, Issued July.
- USGS. 1988. National Water Summary 1986 -- Ground-Water Quality: Rhode Island. U.S. Geological Survey Water-Supply Paper 2325, prepared by H. Johnston and P. Barlow.
- USGS. 1989. National Water Summary 1987- Water Supply and Use: Rhode Island, prepared by H. Johnston and M. Baer, USGS Water-Supply Paper 2350.
- Williams, R. 1964. Bedrock Geology of the Wickford Quadrangle, Rhode Island. Geological Survey Bulletin 1158-C, prepared in cooperation with the State of Rhode Island Development Council, U.S. Government Printing Office, Washington, D.C.

FIGURE 1-1 SITE LOCUS MAP - NCBC DAVISVILLE, RI

Figure 1-2 Site Map, Study Area 16

LEGEND:

- Ground-water
 sampling location
- ← = Seep sampling location

Notes:

Displayed values reported as: Analyte, data and qualifier, sample depth, sample date (concentration units = ug/L)

NE = Not Exceeded

Sample data for Phase II EBS, Phase II EBS Follow-On, and Phase II EBS Follow-On Addendum II investigations

Aerial Photograph, flown 4/11/95 Scale 1:5,400 Rectified by Geofields, Inc.

EA Engineering, Science, and Technology, Inc.

STUDY AREA 16 NCBC DAVISVILLE Figure 5-4: Constituents Exceeding RIDEM GB Objectives in Ground-water Samples and AWQC in Seep Samples

PROJECT MGR JMC DESIGNED BY LCQ DRAWN BY LCQ CHECKED BY JMC

Y SCALE

60 0 60

60 120 Feet D

DATE 047MAY 99 PROJECT NO 29600.60

FILE No.

CTO60.apr

LEGEND:

= Ground-water sampling location

Notes:

Displayed values reported as: Analyte, data and qualifier, sample depth, sample date (concentration units = ug/L)

NE = Not Exceeded

Sample data for Phase II EBS, Phase II EBS Follow-On, and Phase II EBS Follow-On Addendum II investigations

Aerial Photograph, flown 4/11/95 Scale 1:5,400 Rectified by Geofields, Inc.

EA Engineering, Science, and Technology, Inc.

STUDY AREA 16 NCBC DAVISVILLE Figure 5-5: Constituents Exceeding Federal MCL in Ground-water samples

PROJECT MGR JMC DESIGNED BY LCQ DRAWN BY LCQ

CHECKED BY JMC SCALE 90

90 180 Feet

DATE 05 MAY 99 PROJECT NO

FILE No. CTO60.apr

29600.60

Table 2-1 Summary of Analytical Program NCBC Davisville, RI

		No. of			TCL	TCL			TAL
Description	Sample Matrix	Locations	TPH	TPH-GRO	voc	SVOC	Pesticides	PCB	Metals
		_	418.1	8015 Mod	CLPOLM01.8	CLPOLM01.8	OLM03.2	OLM03.2	OLM04.0
Phase II EBS	Soil (surface and subsurface)	4				8			
Phase II EBS Follow-On	Soil (surface and subsurface)	18	33	7	33	33			
	Ground Water	1			1	1			
Phase II EBS Follow-On Addendum II	Soil (surface and subsurface)	5	5	5	5	5	5	5	5
	Ground Water	8			16	16	16		16
	Seep	<u> </u>			1	1	1		1
	Total Field Samples	37	38	12	56	64	22	5	22

note: totals do not include QA/QC samples.

			RIDEM C	Criteria (a)			EPA	EPA Soil Screening Guidan	ce Document (b) (mg/kg)	EPA Region IX So	reening Criteria (c)
	Direct Expo	sure (mg/kg)	Leach	ability	Ground-Wa	ater Objectives	SDWA	Generic SSL for	Generic SSL for		nedial Goals (RBC)
COMPOUND	Residential	Industrial/	Class GA	Class GB	Class GA	Class GB	MCL	Transfers from Soil	Transfers from Soil	Residential	Industrial
	!	Commercial	mg/kg	mg/kg	mg/L	mg/L	(mg/L)	to Ground Water (DAF20)	to Ground Water (DAF1)	Soil (mg/kg)	Soil (mg/kg)
Chloromethane									**	12	2.6
Bromomethane	0.8	2900								6.8	23
Vinyl Chloride	0 02	3	03		0 002		0 002	0 01	0 0007	0 016	0 035
Chloroethane	-					-					
Methylene Chloride	45	760		-	0 005		0 005	0.02	0 001	7.8	18
Acetone	7,800	10,000	·	-				16	0.8	2100	8800
Carbon Disulfide								32	2	7.5	24
1,1-Dichloroethene	02	9 5	07	0.7	0 007	0 007	0 007	0 06	0 003	0 037	0 08
1,2-Dichloroethane	920	10,000			0 005			23	1	500	1700
cis-1,2-Dichloroethene	630	10,000	17	60	0 07	24	0 07	0.4	0 02	31	100
trans-1,2-Dichloroethene	1,100	10,000	3 3	92	01	28	0 1	0.7	0 03	78	270
1,2-Dichloroethene (mixture)										35	120
Chloroform	12	940				-	0 1 (1)	0.6	0 03	0 25	0 53
1,2-Dichloroethane	0.9	63	0.1	2.3		0 11	0.005	0 02	0 001	0 25	0 55
2-Butanone (d)	10,000	10,000		-						7100	27000
1,1,1-Trichloroethane	540	10,000	11	160	02	3 1	02	2	0 1	1200	3000
Carbon Tetrachloride	15	44	0.4	5	0.005	0.07	0 005	0 07	0.003	0 23	0.5
Bromodichloromethane	10	92					0.1 (j)	0.6	0.03	0 63	1.4
Dibromochloropropane (DBCP)	0.5	4 1			0 0002	0 002	0 0002				
Ethylene dibromide (EDB) (e)	0.01	0 07	0 0005		0 00005	**	0 00005			0 0049	0 02
Isopropyl benzene (f)	27	10,000		-				-		19	62
Methyl-tert-butyl-ether (MTBE)	390	10,000	0.9	100	0 04	5					
1,1,1,2-Tetrachloroethane	22	220	-		-	**			*-	2 4	5 4
1,2-Dichloropropane	19	84	01	70	0.005	3	0 005	0 03	0 001	0 31	0 68
cis-1,3-Dichloropropene (g)								0 004	0 0002	0 25	0 55
trans-1,3-Dichloropropene (g)				-			••	0.004	0 0002	0 25	0 55
Trichloroethene (TCE)	13	520	02	20	0 005	0 54	0 005	0 06	0 003	3 2	7
Dibromochloromethane (h)	7.6	68					01(j)	0.4	0 02	53	23
1,1,2-Trichloroethane	36	100	0 1		0 005		0 005	0 02	0 0009	0 65	15
Benzene	25	200	02	43	0 005	0 14	0 005	0.03	0 002	0 63	1 4
Bromoform	81	720		-			0 1 (j)	0.8	0 04	56	240
4-Methyl-2-Pentanone (i)	1,200	10,000					-			770	2800
2-Hexanone (j)											
Tetrachloroethene (PCE)	12	110	01	42	0 005	0 15	0 005	0 06	0 003	5 4	17
1,1,2,2-Tetrachloroethane	13	29				-		0 003	0 0002	0 45	11
Toluene	190	10,000	32	54	1	17	1	12	0.6	790	880
Chlorobenzene	210	10,000	32	100	01	3 2	-	1	0.07	65	220
Ethylbenzene	71	10,000	27	62	0.7	16	0.7	13	0 7	230	230
Styrene	13	190	29	64	0 1	2 2	01	4	02	680	680
Xylene (total)	110	10,000	540		10		10	190	9	320	320

⁽a) RIDEM Remediation Regulations, as amended August 1996

⁽e) a k a 1,2-dibromoethane reported MCL

⁽h) a k a chlorodibromomethane

⁽b) EPA, May 1996

⁽f) a k.a cumene

⁽i) a.k a methyl isobutyl ketone

⁽c) EPA Region IX, May 1998

⁽g) one result reported for these isomers

⁽j) a.k.a. butyl methyl ketone

⁽d) a k a methyl ethyl ketone SSL = Soil Screening Level

DAF = Dilution Attenuation Factor

^{-- =} no criterion provided

Table 2-3
Semi-Volatile Organic Comp unds (SVOC) Scre ning Crit ria
NCBC Davisville, Rhode Island

			RIDEM C				EPA	EPA Soil Screening Guida	ance Document (b) (mg/kg)	EPA Region IX So	creening Criteria (c
		sure (mg/kg)			Ground-Wat	er Objectives	SDWA	Generic SSL for	Generic SSL for	Preliminary Remed	
COMPOUND	Residential	Industrial/	Class GA	Class GB	Class GA	Class GB	MCL	Transfers from Soil to	Transfers from Soil	Residential	Industrial
		Commercial	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	Ground Water (DAF20)	to Ground Water (DAF1)	Soil (mg/kg)	Soil (mg/kg)
Phenol	6,000	10,000		**			••	100	5	39,000	100,000
bis(2-Chloroethyl)ether	0.6	5 2				•-		0 0004	2.00E-05	0 043	0.097
2-Chlorophenol	50	10,000	-		••			4	0.2	91	370
1,2-Dichlorobenzene (o-DCB)	510	10,000	41	-	0.6		06	17	0.9	700	700
1,3-Dichlorobenzene (m-DCB)	430	10,000	41		0.6					500	860
1,4-Dichlorobenzene (p-DCB)	27	240	41		0.075		0.075	2	0.1	3.6	8.5
2,2'-oxybis(1-Chloropropane)		**		••	-				+		
2-Methylphenol					**	**		15	0.8	3,300	34,000
3-Methylphenol									-	3,300	34,000
4-Methylphenol									**	330	3,400
N-Nitroso-di-n-propylamine								5.00E-05	2.00E-06	0 063	0 27
Hexachloroethane	46	410						0.5	0.02	32	140
Nitrobenzene		**			••		**	0.1	0.007	18	94
Isophorone		••				••		0.5	0.007	470	2,000
2-Nitrophenol	-							-			2,000
2,4-Dimethylphenol	1,400	10,000						9	0.4	1,300	14,000
bis(2-Chloroethoxy)methane					••					1,500	14,000
2,4-Dichlorophenol	30	6,100						1 1	0 05	200	2.000
1,2,4-Trichlorobenzene	96	10.000	140		0.07		0.07	5	03	570	5,500
Naphthalene	54	10.000	0.8		0.02			84	4	240	240
4-Chloroaniline	310	8.200			••			0.7	0.03	260	2,700
Hexachlorobutadiene	8 2	73			*-			2	0.1	57	24
4-Chloro-3-methylphenol		**				-+					
2-Methylnaphthalene	123	10,000								† 	
Hexachlorocyclopentadiene		••					0 05	400	20	450	4,600
2,4,6-Trichlorophenol	58	520			•-			0.2	0 008	40	170
2,4,5-Trichlorophenol	330	10,000	-					270	14	6,500	68,000
Beta-Chloronaphthalene							•-		•••	110	110
2-Nitroaniline										3.9	41
3-Nitroaniline									••	3.3	41
Dimethylphthalate	1,900	10,000				**			•••	100,000	100,000
Acenaphthylene	23	10,000								100,000	
2,6-Dinitrotoluene								0 0007	3 00E-05	<u> </u>	
Acenaphthene	43	10,000						570	3 00E-05 29	65 110	680 110

(a) RIDEM Remediation Regulations, as amended August 1996 (b) EPA, May 1996

SSL = Soil Screening Level DAF = Dilution Attenuation Factor

(c) EPA Region IX, May 1998

-- = no criterion provided

Tabl 2-3 (continued) Semi-Volatile Organic Compounds (SVOC) Screening Criteria NCBC Davisville, Rhode Island

	L		RIDEM C				EPA	EPA Soil Screening Guid	ance Document (b) (mg/kg)	EPA Region IX So	reening Criteria
	Direct Expo	sure (mg/kg)	Leach	ability	Ground-Wat	er Objectives	SDWA	Generic SSL for		Preliminary Remed	
COMPOUND	Residential	Industrial/	Class GA	Class GB	Class GA	Ciass GA	MCL	Transfers from Soil to	Transfers from Soil	Residential	Industrial
		Commercial	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	Ground Water (DAF20)		Soil (mg/kg)	Soil (mg/kg)
2,4-Dinitrophenol	160	4,100			••			0.3	0 01	130	1,400
4-Nitrophenol	-			••					••		.,,
Dibenzofuran			-	-				**	**	140	140
2,4-Dinitrotoluene	0.9	8.4	41					0.0008	4 00E-05	130	1,400
Diethylphthalate	340	10,000	41	+-				470	23	52,000	100,000
4-Chlorophenyl-phenylether			41		••					- 52,000	100,000
Fluorene	28	10,000	-					560	28	90	90
4-Nitroaniline								-			
2-methyl-4,6-Dinitrophenol											
N-Nitrosodiphenylamine								1	0.06	91	390
4-Bromophenyl-phenylether							_		••		
Hexachlorobenzene	04	3.6			0.001		0.001	2	0 1	0 28	1.2
Pentachlorophenol	5.3	48			0.001	#-	0.001	0 03	0 001	2.5	7 9
Phenanthrene	40	10,000			**				**		
Anthracene	35	10,000						12,000	590	5.7	5.7
Di-n-butyl phthalate					••		-	2,300	270	6,500	68,000
Fluoranthene	20	10,000		-				4,300	210	2.600	27,000
Carbazole					**			0.6	0.03	22	95
Pyrene	13	10,000	140					4,200	210	100	100
Butyl benzyl phthalate			0.8	••			**	930	810	930	930
1,1-Biphenyl	0.8	10,000						**		350	350
bis(2-Chloroisopropyl)ether	91	82								2.5	6.7
Diethylhexyl phthalate					0.006		0 006				<u> </u>
3,3'-Dichlorobenzidine	14	13						0.007	0.0003	0.99	4.2
Chrysene	0.4	780	-		•			160	8	7 2	7.2
bis(2-Ethylhexyl)phthalate	46	410			-		0.006	3,600	180	32	140
Di-n-octylphthalate								10,000	10,000	1,300	10,000
Benzo(a)anthracene	0.9	7.8						2	0.08	0.61	2.6
Benzo(b)fluoranthene	0.9	7.8						5	0.2	0.61	2.6
Benzo(k)fluoranthene	0.9	78						49	2	6.1	26
Benzo(a)pyrene	0.4	0.8			0.0002		0.0002	8	0 4	0.061	0.26
Indeno(1,2,3-cd)pyrene	0.9	7.8						14	0.7	0.61	2.6
Dibenz(a,h)anthracene	0.4	0.8						2	0.08	0.061	0 26
Benzo(g,h,l)perylene	0.8	10,000							0.00		U 26

⁽a) RIDEM Remediation Regulations, as amended August 1996
SSL = Soil Screening Level DAF = Dilution Attenuation Factor

-- = no criterion provided

Table 2-4
Total Petroleum Hydrocarbons (TPH) Screening Criteria
NCBC Davisville, Rhode Island

	F	RIDEM Criteria (mg/kg) (a) Direct Exposure Leachability sidential Industrial/ Class GA Class GB					EPA Re	gion IX Screening Criteria	ı (mg/kg)
	Direct I	Exposure	Leach	nability	\$DWA	Soil Ing	gestion	SSL for Transfers from	SSL for Transfers from
COMPOUND	Residential	Industrial/	Class GA	Class GB	MCL	Residential	Industrial	Soil to Ground Water	Soil to Ground Water
		Commercial			(mg/L)			(DAF 20)	(DAF 1)
TPH **	500 *	2,500	500 * `	2,500	+-				

(a) RIDEM Remediation Regulations, as amended August 1996
SSL = Soil Screening Level DAF = Dilution Attenuation Factor -- = no criterion provided

- * The criterion may be 1,000 mg/kg contingent upon field-verification by RIDEM personnel to determine compliance with Rule 8.01 (Remedial Objectives) prior to approval as a final remedial objective. These objectives include specific acceptable risk levels, consideration of nearby sensitive habitat, and protection of ground water.
- ** The RIDEM Soil Criteria is given for TPH and does not differentiate between diesel, hydraulic fluid, and gasoline.

Table 2-5 Inorganic Screening Criteria NCBC Davisville, Rhode Island

			RIDEM	Criteria (a)		·	EPA	EPA Soil Screening Guida	ance Document (b) (mg/kg)	EPA Region IX	Screening Criteria (c)	NCBC Davisville
	Direct Expos	ure (mg/kg)	Leachability	(TCLP/SPLP)	Ground-Wate	r Objectives	SDWA	Generic SSL for	Generic SSL for	Preliminary R	emedial Goals (RBÇ)	Background Levels
COMPOUND	Residential	Industrial/	Class GA	Class GB	Class GA	Class GB	MCL	Transfers from Soil to	Transfers from Soil to	Residential	industrial	for
		Commercial	(mg/L)	(mg/L)	(mg/L)	_(mg/L)	(mg/L)	Ground Water (DAF20)	Ground Water (DAF1)	Soil (mg/kg)	Soil (mg/kg)	Surface Soil (d) (mg/kg)
Aluminum							-		-	77000	100000	1,170 - 8,560
Antimony	10	820	0.05	-	0 006		0 006	5	03	31 *	680 *	ND
Arsenic	17	38	-	-	-		0 05	29	1	22 / 0 38 (f)	'/ 2 4 (f)	0 59 - 8 1
Barium	5,500	10,000	23		2		2	1,600	82	5,300 *	100,000 *	56-155
Beryllium	0 4	13	0 03		0 004		0 004	63	3	0.143	1 109	ND - 0 66
Cadmium	39	1,000	0 03		0 005		0 005	8	0.4	38 *	850 *	ND - 0 46
Calcium			-		-		-		~	_		62 7 - 628
Chromium III	1,400	10,000			_				~			no data
Chromium VI	390	10,000			-			38	2	30	64	no data
Chromium (total)			_1 1	-	0 1		0 1	38	2	30	64	ND - 9 6
Cobalt								-		4,600	97,000	ND - 4 6
Copper	3,100	10,000					1 3 action			2,800 *	63,000 *	3 9 - 15
Cyanide	200	10,000	24		02		02	40	2	(e)	(e)	no data
Iron		••	-	-				-				3,810 - 12,000
Lead	150	500	0 04	-	0 015		0 015 action			400	1,000	3 4 - 53 8
Magnesium												325 - 1,220
Manganese	390	10,000		-						3,000 *	43,000 *	21 8 - 150
Mercury	23	610	0 02	-	0 002		0 002			(g)	(g)	ND - 0 03
Nickel	1,000	10,000	1	-	0 1			130	7		**	ND - 5
Potassium							-					145 - 728
Selenium	390	10,000	06		0 05		0 05	5	03	380	8,500	ND - 0 77
Silver	200	10,000					-	34	2	380 *	8,500 *	ND - 0 08
Sodium				-								ND -119
Thailium	5 5	140	0 005	-	0 002		0 002	0.7	0 04	(h)	(h)	ND
Vanadium	550	10,000						6,000	300	540	12,000	3 3 - 24 6
Zinc	6,000	10,000						12,000	620	23,000	100,000	10 3 - 172

⁽a) RIDEM Remediation Regulations, as amended August 1996 (b) EPA, May 1996 (c) EPA Region IX, May 1998 (d) TRC, 1994

SSL = Soil Screening Level DAF = Dilution Attenuation Factor *- and compounds

TCLP = Toxicity Characteristic Leaching Procedure

ND = non-detect

⁽e) no criterion provided for elemental cyanide, criteria are available for free cyanide and cyanide compounds

⁽f) non-cancer/cancer criteria (g) criterion available for methyl mercury only

⁽h) no criterion provided for elemental thallium, criteria are available for thallium compounds

Table 2-6 Pesticide/PCB Scr ening Criteria Target Compound List - Pesticides/PCBs NCBC Davisville, RI

		RIDEM Cri	teria (a)		EPA				Screening Criteria (c)
	Direct Expo	sure (mg/kg)	Leach	ability	SDWA	Migration to Ground Water	Migration to Ground Water	RBC	RBC
ļ	Residential	Industrial/	Class GA	Class GB	MCL	Generic SSL (DAF1)	Generic SSL (DAF20)	Residential	Industrial
COMPOUND		Commercial	(mg/kg)	(mg/kg)	(mg/l)	(mg/kg)	_(mg/kg)	Soil (mg/kg)	Soil (mg/kg)
alpha-BHC **						0.00003	0.0004	0.086	0 67
beta-BHC **						0.003	0 0001	0.3	2 3
gamma-BHC **						0.005	0.009	0.42	3 2
delta-BHC **						0.0001	0.003	0 03	2 3
Heptachlor					0 0004	1	23	0.099	0 67
Aldrin						590	12,000	0.026	0 18
Heptachlor epoxide					0.0002	0 03	0.7	0.049	0 33
Endosulfan						0.9	18	330	6,400
Dieldrin	0.04	0.4				0 0002	0.004	0 028	0 19
4,4'-DDE						3	54	17	13
Endrin					0.002	0.05	1	16	3,200
4,4'-DDD						0.8	16	2 4	19
Endosulfan sulfate									
4,4'-DDT					-	2	32	17	13
Methoxychlor					0 04	8	160	270	5,300
Endrin ketone									
Endrin aldehyde									
alpha-Chlordane ***	0.5	4.4	1 4		0.0002	0.5	10	1.6	120
gamma-Chlordane ***	0.5	4 4	14		0.0002	0.5	10	16	120
Toxaphene					0.0003	2	31	0 4	2 7
Aroclor-1016								3.4	63
Aroclor-1221									
Aroclor-1232									
Aroclor-1242									
Aroclor-1248									
Aroclor-1254								0.97	18
Arocior-1260									
PCBs ****	10	10	10	10	0 0005	1,000		0.2	1.3

^{* -} Draft Soil Screening Criteria ** - a.k a hexochlorocyclohexane (HCH) *** - RIDEM Criteria for Chlordane **** - Total of detected Aroclors

⁽a) RIDEM as amended August 1996

TABLE 4-1 SVOC DETECTED IN SOIL SAMPLES DURING THE PHASE II EBS INVESTIGATION

SAMPLE ID	28-SB-01A		28-SB-01A		28-SB-01B		28-SB-01B		28-SB-01C		28-SB-01C	T	28-SB-01D		28-SB-01D		28-SB-01D	
SAMPLE INTERVAL	0-2'		2-4'		0-2' [DL]	-	: 2-4'.		0-2'	•	2-3.5' [DL]		0-2'		2-4'		2-4' [DUP]	
DATE COLLECTED	4/24/96		4/24/96		4/24/96		4/24/96		4/24/96	-	4/24/96		4/24/96		4/24/96		4/24/96	
ANALYTE	μg/kg	Q	μg/kg	Q	μg/kg	Q	μg/kg	२	μg/kg	Q	μg/kg (रो	μg/kg	Q	μg/kg	Q	μg/kg	(
Naphthalene	30	J	ND		ND	П	ND	1	ND	1	140 .	J	ND		ND	П	550	-
Acenaphthylene	54	J	ND		ND	П	ND	1	ND	T	75 .	J	ND		ND	П	ND	<u> </u>
Acenaphthene	420	П	4200	J	2400	J	51	7	ND	†	1400 .	J ,	800	J	9200	J	21000	J
Fluorene	5 3	IJ	160	J	510	J	ND	1	ND		38 .	ij	140	J	180	J	110	
Phenanthrene	30	П	550	J	900	1	14	7	6 4	J	300 .	ij	280	J	1600	J	1600	
Anthracene	15	Ħ	150	j	4600	1	40	†	5 2	J	92 .	J	300	J	430	J	800	J
Fluoranthene	73	Ħ	1600	J	2500	J	41	7	17	J	480 .	J	930	J	1900	J	2800	J
Pyrene	70	Π	1300	J	1700	J	37	1	13	ij	360 .	j	2200	J	1500	J	2300	J
Benzo(a)anthracene	57	П	1200	ī	590	J	11	7	4.4	†	230 .	J	1100	J	1300	J	2700	J
Chrysene	73	Ħ	1200	J	1500	J	28	1	15 ·	J	300 .	ij	1400	J	1300	기	2700	_
Benzo(b)fluoranthene	100	Ħ	1200	J	680	J	17	1	7 8		330 .	J	1800	J	1800	J	3800	J
Benzo(k)fluoranthene	39	Ħ	510	ı	300	J	7 4	1	2.9	\dagger	99 .	J	820	J	690	J	1500]
Benzo(a)pyrene	67			IJ,	330	J	8.2	+	3 6	ij	280 .	j į	1400	٤J	2200	J.	2700	×
Indeno(1,2,3-cd)pyrene	47	11	500	J	150	J	4 1	+	1 7	J	130 .	J	490	J	800	J	1600	
Dibenz(a,h)anthracene	9.0	$\dagger \dagger$	150	J	ND	$\dagger \dagger$	ND	1	ND	\dagger	32 .	7	88	J	210	J	420	_
Benzo(g,h,i)perylene	87	\forall	840	J	280	J	6.4	†	3 2	+,	240	,	700	J	1400	j	2700	_

Shaded data blocks indicate concentrations above RIDEM Industrial/Commercial Direct Soil Exposure Criteria or DAF 20 criteria, as described in Section 2 12 3 ND = not detected Q = data validation qualifier J = estimated

TABLE 4-2 ANALYTES DETECTED IN SOIL AND GROUND-WATER SAMPLES DURING THE PHASE II EBS FOLLOW-ON INVESTIGATION

SAMPLE ID	28-GW-01	A	28-GW-0		28-SS-0)1	28-SB-0	1	28-SB-0	1
SAMPLE INTERVAL			(Duplicat	-	1		0-2'		8-10'	
DATE COLLECTED	(μg/L) 7/17/97		(μg/L) 7/1 7 /97		7/1/97	,	6/17/97	,	6/17/97	,
ANALYTE	CONC	Q	CONC	Q	CONC	Q	CONC	IQ	CONC	
TPH	CONC	I Q	CONC	<u> </u>	CONC	ĮŲ	CONC	141	CONC	Q
TPH by 418.1 (mg/kg)	NA		NA		119		368		ND	
TPH GRO (μg/kg)	NA		NA		NA		NA		NA	
VOC (μg/kg)										
Acetone	ND		ND		ND		ND		220	
Methylene Chloride	ND		ND		ND		ND	1 1	ND	1
Toluene	ND		ND		ND		ND		ND	
SVOC (μg/kg)										
Naphthalene	ND		ND		ND		ND		ND	T
2-Methylnaphthalene	ND		ND		ND		ND		ND	
Acenaphthene	ND		ND		ND		ND		ND	
Diethylphthalate	ND		ND		ND		ND		ND	
Fluorene	ND		ND		ND		ND		ND	\Box
Phenanthrene	ND		ND		530	J	ND		ND	
Anthracene	ND		ND		ND		ND		ND	
Carbazole	ND		ND		45	J	ND		ND	
Dibenzofuran	ND		ND		ND		ND		ND	†
Di-n-butyl phthalate	ND		ND		ND		ND		57	J
Fluoranthene	ND		ND		930	J	ND		ND	
Pyrene	ND		ND		760	J	ND		ND	$\dagger \dagger$
Benzo(a)anthracene	ND		ND		93	J	ND		ND	† †
Chrysene	ND		ND		370	J	ND		ND	$\top 1$
bis(2-Ethylhexyl)phthalate	39	J	53	J	ND		ND		ND	\Box
Benzo(b)fluoranthene	ND		ND		420	J	ND		ND	\Box
Benzo(k)fluoranthene	ND		ND		130	J	ND		ND	
Benzo(a)pyrene	ND		ND		93	J	ND		ND	\Box
Indeno(1,2,3-cd)pyrene	ND		ND		71	J	ND	1 1	ND	\Box
Dibenzo(a,h)anthracene	ND		ND		ND		ND		ND	\sqcap
Benzo(g,h,i)perylene	ND		ND		39	J	ND		ND	$\dagger \exists$

Shaded data blocks indicate concentrations above RIDEM Ind./Com. Direct Soil Exposure or in the absence of RIDEM Criteria concentrations were compared to EPA Region IX DAF 20 Criteria.

NA = not analyzed

ND = not detected

Q = data validation qualifier

¹ Temporary sampling location (geoprobe) adjacent to 28-SB-14.

SAMPLE ID	28-SB-0	2	28-SB-02		28-SB-0	3	28-SB-0	3	28-SB-0	4
SAMPLE INTERVAL	0-2'	ı	8-10'		0-2'		6-8'		0-2'	
DATE COLLECTED	6/18/97		6/18/97		6/18/97		6/18/97		6/18/97	7
ANALYTE	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q
TPH	···									
TPH by 418.1 (mg/kg)	ND		ND		ND		ND		ND	
TPH GRO (μg/kg)	NA		ND		NA		ND		NA	1
VOC (μg/kg)	-									
Acetone	ND		15000	J	1300	J	4400	J	3700	J
Methylene Chloride	ND		ND		ND		ND		ND	-
Toluene	ND		ND		ND		ND		ND	
SVOC (µg/kg)	·							<u></u>		_!
Naphthalene	ND		ND		ND		ND	ПТ	ND	T
2-Methylnaphthalene	ND		ND		ND		ND		ND	1
Acenaphthene	ND		ND		ND		ND		ND	—
Diethylphthalate	ND		ND		ND		ND		ND	1
Fluorene	ND		ND		ND		ND		ND	+
Phenanthrene	ND		ND		ND		ND		ND	1
Anthracene	ND		ND		ND		ND		ND	1
Carbazole	ND		ND		ND		ND		ND	+
Dibenzofuran	ND		ND		ND		ND		ND	1
Di-n-butyl phthalate	ND		ND		ND		ND		ND	†
Fluoranthene	ND		ND		ND		ND		50	J
Pyrene	ND		ND		ND		ND		44	J
Benzo(a)anthracene	ND		ND		ND		ND		ND	1
Chrysene	ND		ND		ND		ND		36	J
bis(2-Ethylhexyl)phthalate	ND		ND		ND		ND		ND	1
Benzo(b)fluoranthene	ND	\dashv	ND		ND		ND		50	J
Benzo(k)fluoranthene	ND		ND		ND		ND		ND	
Benzo(a)pyrene	ND		ND		ND		ND		ND	†
Indeno(1,2,3-cd)pyrene	ND	\neg	ND		ND		ND	1 1	ND	1
Dibenzo(a,h)anthracene	ND	_	ND		ND		ND		ND	1-
Benzo(g,h,i)perylene	ND	\dashv	ND		ND		ND		ND	†

NA = not analyzed

ND = not detected

Q = data validation qualifier

SAMPLE ID	28-SB-0)4	28-SB-05		28-SB-0	5	28-SB-0	6	28-SB-06	5
SAMPLE INTERVAL	2-4'		0-2'		6-8'		0-2'		8'-10'	
DATE COLLECTED	6/18/9	7	6/18/97		6/19/97		6/18/97	7	6/19/97	
ANALYTE	CONC	Q	CONC	Q	CONC	Q	CONC	Q	CONC	Q
ТРН								_		
TPH by 418.1 (mg/kg)	ND		34		ND		552		118	Π
TPH GRO (μg/kg)	NA		NA		ND		NA		ND	
VOC (μg/kg)								- 1	·	
Acetone	150	J	3000	J	2000	J	33		75000	
Methylene Chloride	ND		ND		ND		ND	1	ND	3 40 100 2
Toluene	ND		ND		ND		ND		ND	†
SVOC (μg/kg)	<u> </u>				<u> </u>				L- , , , , , , , , , , , , , , , , , , ,	-L
Naphthalene	ND		ND		ND		ND	T	ND	
2-Methylnaphthalene	ND		ND		ND		ND	T	ND	
Acenaphthene	ND		ND		ND		62	J	ND	
Diethylphthalate	ND		ND		ND		ND		ND	
Fluorene	ND		ND		ND		62	J	ND	
Phenanthrene	ND		ND		ND		500		ND	i i
Anthracene	ND		ND		ND		87	J	ND	T
Carbazole	ND		ND		ND		66	J	ND	t
Dibenzofuran	ND		ND		ND		ND		ND	
Di-n-butyl phthalate	120	J	56	J	ND		49	J	ND	
Fluoranthene	ND		ND		ND		580		ND	
Pyrene	ND		ND		ND		490		ND	
Benzo(a)anthracene	ND		ND		ND		350		ND	
Chrysene	ND		ND	\Box	ND		340	J	ND	
bis(2-Ethylhexyl)phthalate	ND		ND		110	J	ND		ND	
Benzo(b)fluoranthene	ND		ND		ND		530		ND	
Benzo(k)fluoranthene	ND		ND		ND		180	J	ND	
Benzo(a)pyrene	ND		ND		ND		350		ND	
Indeno(1,2,3-cd)pyrene	ND		ND		ND		260	1	ND	
Dibenzo(a,h)anthracene	ND		ND		ND		84	J	ND	
Benzo(g,h,i)perylene	ND		ND		ND		250	J	ND	

NA = not analyzed

ND = not detected

Q = data validation qualifier

SAMPLE ID	28-SB-0	07	28-SB-07	,	28-SB-0	7	28-SB-0	8
SAMPLE INTERVAL	0-2'		0-2'		2-4'		0-2'	•
			Duplicate	;			-	
DATE COLLECTED	6/18/9		6/18/97		6/18/97		6/18/97	,
ANALYTE	CONC	Q	CONC	Q	CONC	Q	CONC	Q
TPH								
TPH by 418.1 (mg/kg)	708	J	176	J	ND		1640	J
TPH GRO (μg/kg)	NA		ND		ND		NA	
VOC (μg/kg)								
Acetone	890	J	880	J	150	J	27	J
Methylene Chloride	4	J	ND		ND		ND	
Toluene	ND		ND		ND		ND	
SVOC (μg/kg)								
Naphthalene	ND		ND		ND		ND	
2-Methylnaphthalene	ND		ND		ND		ND	
Acenaphthene	ND		ND		ND		ND	
Diethylphthalate	ND		ND		ND		ND	
Fluorene	ND		ND		ND		ND	
Phenanthrene	190	J	210	J	ND		ND	
Anthracene	39	J	ND		ND		ND	
Carbazole	ND		ND		ND		ND	1 1
Dibenzofuran	ND		ND		ND		ND	
Di-n-butyl phthalate	37	J	55	J	ND		ND	
Fluoranthene	1200	J	450	J	ND		ND	
Pyrene	930	J	330	J	ND		ND	
Benzo(a)anthracene	330	J	200	1	ND		ND	
Chrysene	330	J	240	J	ND		ND	
bis(2-Ethylhexyl)phthalate	ND		ND		ND		ND	
Benzo(b)fluoranthene	370		330	J	ND		ND	
Benzo(k)fluoranthene	120	J	120	J	ND		ND	
Benzo(a)pyrene	200	J	230	1	ND		ND	$\vdash \vdash$
Indeno(1,2,3-cd)pyrene	120	J	170	J	ND		ND	$ \neg $
Dibenzo(a,h)anthracene	41	J	54	J	ND		ND	\Box
Benzo(g,h,i)perylene	100	J	170	J	ND		ND	

NA = not analyzed

ND = not detected

Q = data validation qualifier

SAMPLE ID	28-SB-08		28-SB-08		28-SB-09		28-SB-09		28-SB-10	
SAMPLE INTERVAL	0-2' Duplicate		2'-4'		0-2'		2'-4'		0-2'	
DATE COLLECTED	6/18/97		6/18/97		6/18/97		6/18/97		6/18/97	
ANALYTE	CONC	TQ	CONC	Q	CONC	TQ	CONC	Q	CONC	Q
ТРН	1	1	L <u></u> .				,			1
TPH by 418.1 (mg/kg)	94.5	T	810	J	1750		99.6		ND	
TPH GRO (μg/kg)	NA		ND		NA		ND		NA	
VOC (μg/kg)						<u> </u>				
Acetone	22	T .	ND		63	J	190		ND	T
Methylene Chloride	ND		ND		ND	1	ND		ND	1
Toluene	ND		ND		ND		ND		ND	T
SVOC (μg/kg)		<u> </u>								
Naphthalene	ND		ND		ND	T	ND		ND	T
2-Methylnaphthalene	ND	†	ND		ND		ND		ND	1
Acenaphthene	ND		ND		ND		ND		ND	†
Diethylphthalate	ND		ND		ND		ND		ND	T
Fluorene	ND		ND		ND		ND		ND	
Phenanthrene	160	J	220	J	ND		ND		ND	
Anthracene	ND		53	J	ND		ND		ND	T
Carbazole	ND		ND		ND		ND		ND	1
Dibenzofuran	ND		ND		ND		ND	1 1	ND	†
Di-n-butyl phthalate	ND		ND	\dagger	40	J	ND	1 1	ND	1
Fluoranthene	330	J	260	J	ND		ND		ND	†
Pyrene	320	J	360	1	ND		ND		38	J
Benzo(a)anthracene	200	J	200	J	ND	T	ND		ND	1
Chrysene	250	J	190	J	ND		ND		ND	1
bis(2-Ethylhexyl)phthalate	37	J	83	1	ND		46	I	36	J
Benzo(b)fluoranthene	450		240	J	ND		ND		ND	
Benzo(k)fluoranthene	150	J	67	J	ND		ND		ND	
Benzo(a)pyrene	310	J	190	J	ND		ND		ND	
Indeno(1,2,3-cd)pyrene	250	J	140	J	ND		ND		ND	
Dibenzo(a,h)anthracene	94	J	58	J	ND		ND		ND	
Benzo(g,h,i)perylene	290	J	170	1	ND		ND		ND	

NA = not analyzed

ND = not detected

Q = data validation qualifier

SAMPLE INTERVAL DATE COLLECTED ANALYTE TPH TPH by 418.1 (mg/kg) TPH GRO (µg/kg)	4'-6' 6/19/9' CONC ND NA	7 Q	0-2' 6/19/97 CONC	Q	2'-4' 6/19/97 CONC	Q	0-2' 6/19/97 CONC	Q	28-SB-12 6'-8' 6/19/97	
ANALYTE TPH TPH by 418.1 (mg/kg)	CONC		CONC	Q						
TPH TPH by 418.1 (mg/kg)	ND	Q		Q	CONC	Q	CONC	10	00110	T =
TPH by 418.1 (mg/kg)			644					1 4 1	CONC	Q
			644							
TPH GRO (µg/kg)	NA				127		35		ND	T
			NA		NA		NA		NA	\vdash
VOC (μg/kg)										
Acetone	ND		ND		ND		ND	ΤΠ	880	J
Methylene Chloride	ND		ND		ND		ND		ND	
Toluene	ND		ND		ND		ND		ND	1
SVOC (μg/kg)										
Naphthalene	ND		ND		ND		ND		2300	T
2-Methylnaphthalene	ND		ND		ND		ND		420	\vdash
Acenaphthene	ND		ND		ND		ND		530	†
Diethylphthalate	ND		ND		ND		ND		61	J
Fluorene	ND		ND		ND		ND		140	J
Phenanthrene	65	J	ND		49	J	ND		140	J
Anthracene	ND		ND		ND		ND		ND	
Carbazole	ND		ND		ND		ND	1	ND	\vdash
Dibenzofuran	ND		ND		ND		ND		160	J
Di-n-butyl phthalate	ND		ND		ND		ND		56	J
Fluoranthene	78	J	55	J	67	J	ND		78	J
Pyrene	110	J	68	J	75	1	ND		66	1
Benzo(a)anthracene	75	J	ND		43	J	ND		ND	
Chrysene	80	J	41	J	50	J	ND		69	J
bis(2-Ethylhexyl)phthalate	40	J	ND		ND		ND		66	J
Benzo(b)fluoranthene	110	J	56	J	51	1	55	J	110	1
Benzo(k)fluoranthene	43	J	ND		ND		ND		ND	1
Benzo(a)pyrene	87	J	ND		36	J	40	J	83	J
Indeno(1,2,3-cd)pyrene	56	J	ND		ND		ND		70	J
Dibenzo(a,h)anthracene	ND		ND		ND		ND		ND	
Benzo(g,h,i)perylene	66	J	ND		ND		ND		110	J

NA = not analyzed

ND = not detected

Q = data validation qualifier

SAMPLE ID	28-SB-13		28-SB-13		28-SB-14		28-SB-14		28-SB-14	
SAMPLE INTERVAL	0-2'	2'-4	2'-4'		0-2'		0'-2'		42'-44'	
DATE COLLECTED	6/10/07	6/10	6/19/97		C 10.0 10.0		Duplicate		6/23/97	
DATE COLLECTED	6/19/97			<u> </u>	6/20/97		6/20/97		T =	
ANALYTE TPH	CONC	Q CONC	Q	CONC	Q	CONC	Q	CONC	Q	
i	ND	ND		32.3	l j	ND		ND	_	
TPH by 418.1 (mg/kg)	NA NA	NA NA		NA NA	+-	NA NA	—	I	_	
TPH GRO (µg/kg)	NA	NA NA		INA	_1	NA NA		NA	<u></u>	
VOC (μg/kg)										
Acetone	ND	470	J	ND		ND	T	17	Т	
Methylene Chloride	ND	ND		ND	1	ND		ND		
Toluene	ND	ND		ND	7	ND		ND		
SVOC (μg/kg)				•						
Naphthalene	ND	ND		ND	T	ND		ND	Τ	
2-Methylnaphthalene	ND	ND		ND	1	ND		ND	1	
Acenaphthene	ND	ND		ND		ND		ND		
Diethylphthalate	ND	ND		ND		ND		ND		
Fluorene	ND	ND		ND		ND		ND		
Phenanthrene	ND	ND		63	1	ND		ND		
Anthracene	ND	ND		ND	\top	ND		ND		
Carbazole	ND	ND		ND		ND		ND		
Dibenzofuran	ND	ND		ND	1	ND		ND		
Di-n-butyl phthalate	ND	ND		ND	1	ND		ND	\vdash	
Fluoranthene	ND	ND		150	J	51	J	ND		
Pyrene	ND	ND		190	J	50	J	ND		
Benzo(a)anthracene	ND	ND		100	J	ND		ND	\vdash	
Chrysene	ND	ND		110	J	ND		ND	T	
bis(2-Ethylhexyl)phthalate	ND	ND		ND		ND		ND		
Benzo(b)fluoranthene	ND	ND		150	J	39	J	ND		
Benzo(k)fluoranthene	ND	ND		45	1	ND		ND	 	
Benzo(a)pyrene	ND	ND		110	J	ND	1-1	ND		
Indeno(1,2,3-cd)pyrene	ND	ND		70	1	ND		ND		
Dibenzo(a,h)anthracene	ND	ND		ND	†	ND		ND		
Benzo(g,h,i)perylene	ND	ND ND		73	J	ND		ND		

NA = not analyzed

ND = not detected Q = data validation qualifier

28-SB-1)	28-SB-15		28-SB-16	5	28-SB-16		
0-2'		30'-32'	ļ	0-2'		14'-16'		
	7		_	6/24/97	1	6/24/97		
CONC	Q	CONC	Q	CONC	Q	CONC	Q	
								
54.9		31.4		27.7		44.4		
NA		NA		NA		NA		
				ND		14		
ND				ND		ND		
6	1	ND		ND		ND		
			<u> </u>					
ND		ND		ND	TI	ND	T	
ND				ND		ND		
ND		ND		ND		ND		
ND		ND		ND		ND	\dashv	
ND		ND		ND		ND		
ND				ND		ND		
ND		ND		ND		ND	_	
ND		ND		ND	1	ND		
ND		ND	1 1	ND	1-1	ND		
43	1	47	J	44	J	53	J	
82	J	ND		ND		ND		
86	J	ND		ND	T	ND	\dashv	
59	J	ND		ND		ND		
66	J	ND		ND		ND	\top	
ND		ND		ND		ND	+	
100	J	ND	1 1	ND	+-+	ND	+-	
ND		ND	1 1	ND	1-1-	ND		
58	J	ND		ND	\top	ND		
50	3	ND	1	ND	1-1	ND		
ND	1 1	ND		ND	1 +	ND	1-	
48	J	ND		ND	1 1	ND		
	6/23/97 CONC 54.9 NA ND	6/23/97 CONC Q	6/23/97 6/24/97 CONC Q CONC 54.9 31.4 NA NA ND ND 82 J ND ND 86 J ND 86 J ND ND ND ND	6/23/97 6/24/97 CONC Q CONC Q	6/23/97	6/23/97	6/23/97	

NA = not analyzed

ND = not detected

Q = data validation qualifier

TABLE 4-3
ANALYTES DETECTED IN SOIL SAMPLES DURING THE PHASE II EBS
FOLLOW-ON ADDENDUM II INVESTIGATION

ANALYTE	28-SB-		28-SB		28-SB-		28-SB		28-SS-	21
SAMPLE INTERVAL (ft bgs)	8-10		10-1		8-10		8-10	-	0-2	
DATE COLLECTED	10/13/	98	10/13	/98	10/13/	98	10/13	/98	10/13/	98
METALS (mg/kg)										
		Q		Q		Q		Q		Q
Aluminum (fume or dust)	3,480		8,780		9,010		3,600		4,300	
Antimony	ND		0.66	J	ND		6.4	J	ND	
Arsenic	1.6	J	2.5		2.4		2.8		2.2	
Barium	11.6	J	35.8	J	37.6	J	98.9		19.4	J
Beryllium	0.27	J	0.57	J	0.52	J	0.3	J	0.38	J
Cadmium	ND		ND		ND		0.81	J	ND	
Calcium	505	J	1,050	J	934	J	2,640		419	J
Chromium	4.9		13.3	-	10.8		16.5		5.5	
Cobalt	4.2	Ĵ	9.5	J	8.4	J	7	J	4.2	J
Copper	8.4		28.3		21.9		54.1		18.5	
Iron	6,980		17,300		16,000		25,800		9,740	
Lead	4.6		24.6		27.2		339		58.6	
Magnesium	969	J	3,240		2,550		1,660		1,200	
Manganese	121	J	228	J	198	J	317	J	167	J
Mercury	ND		ND		ND		0.14		ND	
Nickel	6.9	J	17.1		12.4		18.3		7.3	J
Potassium	401	J	1170		1,080		901	J	599	J
Silver	ND		ND		ND		0.29	J	ND	
Sodium	101	J	103	J	92.3	J	145	J	75.8	J
Vanadium (fume or dust)	6.1	J	14.9		15.3		7.4	J	7.5	J
Zinc	20.7		61.8		73.7		528		39.6	
SVOC (μg/kg)		.					·			
1,2-Benzphenanthracene	ND		NE)	ND		ND		96	
Benzo(a)anthracene	ND		NE)	ND		ND		70	
Benzo(a)pyrene	ND		ND)	ND		ND		70	
Benzo(b)fluoranthene	ND		ND)	ND		ND		130	
Fluoranthene	ND		NE)	ND		ND		160	
Phenanthrene	ND		NE)	ND		ND		74	
Pyrene	ND		ND)	ND		ND		140	
VOC (μg/kg)					•					
Acetone	ND		20		ND		ND		ND	
TPH (mg/kg)					<u> </u>		_			
TPH	ND		ND)	ND		82.9)	ND	
4 11 1 1 1 1 1			Ind /Co		ina at Cai					

Shaded data blocks indicate concentrations above RIDEM Ind./Com. Direct Soil Exposure or in the absence of RIDEM Criteria concentrations were compared to EPA Region IX DAF 20 Criteria.

ND = not detected

Q = data validation

J = estimated

TABLE 4-4 ANALYTES DETECTED IN GROUND-WATER AND SEEP SAMPLES DURING THE PHASE II EBS FOLLOW-ON ADDENDUM II INVESTIGATION

SAMPLE ID	28-GW-0	1	28-GW	-01	28-GW-02	28-GW-	02	28-GW-	03	28-GW	-03	28-GW-	04	28-GW-	04	28-GW-05
SAMPLE INTERVAL (ft bgs)	10-12		23-25	5	31-33	8-10		40-42	2	7-9		42-44		7-9		44-46
DATE COLLECTED	10/15/98		10/15/9	98	10/14/98	10/14/9	98	10/12/9	98	10/8/9	8	10/8/9	8	10/8/9	8	10/7/98
DISSOLVED METALS (µg/L)																
		Q		Q			Q		Q		Q		Q		Q	
Aluminum (Fume or Dust)	ND		ND		ND	ND		ND		ND		ND		ND		ND
Antimony	ND		ND		ND	ND		ND		ND		ND		ND		ND
Arsenic	ND		1.8	J	ND	ND	1	ND		2.2 J		ND		24.5		ND
Barium	18.7	J	ND		ND	16.3	J	ND		55.4	J	77.1	J	15	J	18.9 J
Beryllium	ND		ND		ND	ND		ND		ND		ND		ND		ND
Calcium	60,600		ND		ND	ND	Γ	ND		ND		56,400		12,400		8,810
Cobalt	ND		ND		ND	ND		9.1	J	ND		ND		ND		ND
Iron	ND		ND		ND	ND		ND		ND		4,630	J	8,630	J	6,050 J
Lead	ND		ND		ND	ND		ND		ND		ND		ND		ND
Magnesium	6,310		6,060		4,060	ND	Π	4,140		6,280		5,240	J	3,350	J	3,010 J
Manganese	ND		ND		ND	ND		695		ND		832		487		363
Nickel	ND		ND		ND	ND		ND		ND		ND		ND		ND
Potassium	ND		ND		ND	ND		ND		ND		7,370	Г	2,420	J	3,070 J
Sodium	ND		ND		ND	ND		ND		ND		21,200		26,300		55,000
Vanadium (Fume or Dust)	ND		ND		ND	ND		ND		ND		ND		ND		ND
Zinc	ND		ND		ND	ND		ND		ND		7.6	J	73.4		124

Shaded data blocks indicate concentrations above RIDEM GB Ground-Water Objectives or in the absence of RIDEM Criteria concentrations were compared to Federal MCL.

ND= not detected

Q = data validation qualifier

J = estimated

SAMPLE ID	28-GW-05	28-GW-06	28-GW-06	28-GW-07	28-GW-07	28-GW-08	28-GW-08	28-SP-0	ī
SAMPLE INTERVAL (ft bgs)	8-10	35-37	7-9	27-29	6-8	29-31	8-10		
DATE COLLECTED	10/7/98	10/6/98	10/6/98	10/13/98	10/13/98	10/16/98	10/16/98	10/15/98	3
DISSOLVED METALS (µg/L))								
]	Q			70
Aluminum (Fume or Dust)	ND	ND	128	ND	ND	ND	ND	2,630	\top
Antimony	ND	ND	4.2 J	ND	ND	ND	ND	ND	\top
Arsenic	ND	ND	ND	ND	ND	ND	ND	1.9	1
Barium	ND	19.8 J	447	ND	264	ND	372	370	+
Beryllium	ND	ND	ND	ND	ND	ND	ND	0.21	 1
Calcium	ND	2,840 J	55,000	ND	ND	ND	72,200	ND	+
Cobalt	ND	ND	ND	ND	ND	ND	ND	ND	+
Iron	30,800 J	5,490 J	16,600 J	ND	ND	ND	ND	ND	+
Lead	ND	1 J	ND	ND	ND	ND	ND	29.3	7/5
Magnesium	ND	879 J	5,190 J	6,480	4,390	6,750	7,360	8,900	400
Manganese	ND	423	1,170	ND	704	1,600	ND	ND	+
Nickel	ND	ND	ND	11.8 J	ND	10.2 J	ND	ND	_
Potassium	4,360 J	2,170 J	4,850 J	ND	ND	ND	ND	ND	+
Sodium	6,250	48,900	10,100	ND	ND	50,800	ND	51,900	+-
Vanadium (Fume or Dust)	ND	ND	ND	ND	ND	ND	ND	8.1	+
Zinc	ND	119	ND	ND	ND	ND	ND	ND	+

ANALYTE	28-GW-02	28-GW-07	28-GW-	07 T	28-GW-08	28-SP-01
SAMPLE INTERVAL (ft bgs)	31-33	27-29	6-8		8-10	
DATE COLLECTED	10/14/98	10/13/98	10/13/9	8	10/16/98	10/15/98
SVOC (μg/L)				!		
				Q		
2-Methylnaphthalene	ND	ND	31		ND	ND
Acenaphthene	ND	2	230	D	3	17
Anthracene	ND	ND	5		ND	ND
Bis(2-ethylhyxyl)phthalate	3	ND	ND	11	ND	ND
Carbazole	ND	ND	49		ND	ND
Dibenzofuran	ND	1	130	D	1	8
Fluoranthene	ND	ŊD	14		ND	4
Fluorene	ND	1	150	D	1	12
Naphthalene	ND	ND	41		11	-3
Phenanthrene	ND	1	160	D	ND	
Pyrene	ND	ND	7		ND	2

Shaded data blocks indicate concentrations above RIDEM GB Ground-Water Objectives or in the absence of RIDEM Criteria concentrations were compared to Federal MCL.

For the seep sample, (28-SP-01) the shaded data blocks indicate concentrations above marine chronic AWQC.

ND= not detected

D = sample analyzed with a secondary dilution factor,

ANALYTE	28-GW-02	28-GW-02	28-GW	-03	28-GW	/-03	28-GV	/-04	28-GW	'-04	28-GW	-05	28-GW-05	28-GW-06	28-GW	7-06	28-GV	J-07	28.GV	/_07	128_GW	00 T 20 C	GW/ O
SAMPLE INTERVAL	31-33	8-10	40-43	2	7-9	1	42-4	4	7-9		44-4	6	8-10	35-37	7-9		27-2		6-8		29-31		3-10
DATE COLLECTED	10/14/98	10/14/98	10/8/9	98	10/8/	98	10/8/	98	10/8/	98	10/7/	98	10/7/98	10/6/98	10/6/	98					10/16/		
VOC (μg/L)		<u> </u>	! -		<u> </u>					<u> </u>	·		ł	L					1 2 7 2 0		110/10/	70 107	10,50
				Q		Q		Q		Q		Q				Q		Q	Γ	Q	<u> </u>	2	
1,1-Dichloroethylene	ND	ND	0.3	J	ND		0.4	J	ND	1	1	_	ND	ND	ND		ND	†	ND	\vdash	ND	N	ND
1,2-Dichloroethene, total	ND	ND	2	J	7	J	13	J	31	J	4		ND	ND	0.4	1	ND	1	ND	\vdash	2	N	ND
Acetone	ND	ND	ND		ND		ND	1	ND		ND	-	ND	ND	ND	<u> </u>	5	J	ND	 	ND	N	ND
Benzene	ND	ND	ND		03	J	ND		0 9	J	ND		ND	ND	0.2	J.	ND	╁╌	0.3	1	ND		3
Dichloroethylene	ND	ND	ND		ND	-	ND		ND	-	1		ND	ND	ND		ND	+	ND		ND	N	ND
Methylbenzene	ND	ND .	ND		ND		ND		0.1	J	ND		ND	ND	ND		ND		ND	\vdash	ND	N	ND
Trichloroethylene	ND	0.8 J	- 160	40	4		570	J.	1	Г	210.	J	ND	2	ND	-		†	ND	\dagger	49	J	ND
Vinyl chloride	ND	ND	ND		2	J	ND	- 100 413	× 10-	46	ND	O.A.	-,-: 3 -	ND	. 8	3.5	ND	1	ND		3		4

Shaded data blocks indicate concentrations above RIDEM GB Ground-Water Objectives or in the absence of RIDEM Criteria concentrations were compared to Federal MCL.
ND= Not Detected J

J = estimated

ANALYTE	28-GW-	01	28-GW-	02	28-GW	-02	28-GW	-04	28-GW	-04	28-GW-05	28-GW	7-07	28-GW	/-07	28-GW-	08	28-SP-	01
SAMPLE INTERVAL (ft bgs)	23-25		31-33		8-10		42-44	4	7-9		8-10	27-2	9	6-8		8-10			-
DATE COLLLECTED	10/15/9	8	10/14/9	8	10/14/	98	10/8/9	8	10/8/9	8	10/7/98	10/13/	98	10/13/	/98	10/16/9		10/15/	98
PESTICIDES/PCB (μg/L)																			
		Q		Q		Q		Q		Q			Q		Q		Q		ΤQ
4,4'-DDD	0.0037	J	ND		0.0049	J	ND		ND		ND	ND	 	ND	-	ND		ND	+
4,4'-DDT	ND		ND		0.0063		ND		ND		ND	ND		ND	 	ND	 	ND	+
Alpha-BHC	ND		ND		ND		0.0073		ND		ND	ND		ND		ND	_	ND	十
Dieldrin	ND		ND		ND		ND		ND		ND	ND		ND		ND		0.02	
Endrin	ND		ND		ND		ND		ND		ND	ND		ND		ND	-	0.0039	99 , 77,50
Endrin aldehyde	0.0062	J	ND		ND		ND		ND		ND	ND	1	ND		ND	-	ND	14 50 80L
Gamma-BHC	ND		ND		ND	_	ND		0.0049		ND	0.001	J	ND	-	0.0019	J	ND	+-
Heptachlor epoxide	ND		0.0016	J	ND		0.0013	J	0.0025	J	ND	0.0034	J	0.06	J	ND	 	0.02	

Shaded data blocks indicate concentrations above RIDEM GB Ground-Water Objectives or in the absence of RIDEM Criteria concentrations were compared to Federal MCL.

For the seep sample, (28-SP-01) the shaded data blocks indicate concentrations above marine chronic AWQC.

ND = not detected

J = estimated

APPENDIX A

PHASE II EBS INVESTIGATION

A-1	Review Item 28 (Former Creosote Dip Tank Area) Figure, Boring Logs, and Analytical Data Summary Table
A-2	Review Item 60 (Septic Tanks Building E-107)
	Geophysical Survey, Figures, and Analytical Data Summary Tables
A-3	UST Remedial Investigation Report, December 1994 UST Location 68, Area E (Review Item 85)
	Figures, Boring Logs, and Analytical Data Summary Tables
A-4	Review Item 85 (UST Southwest of Building E-107)
	Boring Logs and Analytical Data Summary Table

Review Item 86 (Floor Drains, Building E-107)

A-5

Appendix A-1

Review Item 28 (Former Creosote Dip Tank Area) Figure, Boring Logs, and Analytical Data Summary Table

										Link St	00	NORDEL MILLER	6	EDO AA	
			E	·l		lance				Job. No. 29600.60	Client	NORDIV, NAVFAC	Location:		nk Azas
			EA Eng				,					NCBC Davisville		ote Dip Ta	nk Area
		\	and T	echn	i gy,	nc.						l-61 rig, pushing 3 in.	Boring No.		
										split spoon sar	mples cont	inuous.		NAMED	
			LOG O	F SOIL	. BORI	NG							j E l	3 6-20-6 8	
7 、			•]	28-58	OIA
aondi	nates:									Sampling Met	hod: 3" OD	split-barrel sampler			
Surfac	e Elevation	r.			•			-		driven by 140-	lb hammer	falling 30°	1	Sheet 1 of	1
	iser Elevati							-		Drilling Water		Not encountered	Start	Drilling	Finish
A VEH C	19C1 C16401	O11.						-		Date:		Time:	04/24/96	Times	04/24/96
										Surface Condi	fione:	Grass/sand	08:00 AM		08:25 AM
		Ta .:		515		Later	- CA	_	Licos	Surface Cond.	DOING.	Cidasasain	UD:UU AIN		V0:23 ANS
Sample	•	Dpth	Samp #	PID	Blows	Strat.	Ft	I	uscs	•		•			
Туре	Driven/In.	Csg.	/ depth	(ppm)	per	Unit	bgs		Log	İ		00" 07000"			
	Recyrd		(ft)	Above tik.	6"					<u> </u>		SOIL DESCRI			
3"	24		S-1		1		G					sand, little coarse sand, ro			
SS	17	0	0-2	0.7	8	·	1			4-17" Silty fine	e sand, little	e subrounded to subanguis	r gravel to 1	", ofive gray, d	ry.
					11		1								
Ī	i i		·	l	20		Ī								
3"	24	 	S-2		5	l i	2			Silty fine sand,	trace coar	rse sand to pea sized grave	L piece of a	lass in top 1".	dark
SS	17	0	2-4	0.5	4					brown, dry.					
 ```	 	 	 		5		3								
1	!	l		į į	6		ľ								
<u></u>	 	├ ─			_		4	F							
l	1	1			 -		! [↑]	Н	Ī.	J		- · · · · · · · · · · · · · · · · · · ·	····	. ,	
	!		ļ	<u> </u>			Ī	Н							
1	l	1		i I				Н							
	L	<u> </u>						Ш							
		ĺ		1				Ш							
		<u> </u>						Ш							
				}						<u> </u>					
ŀ	i								!						
	1														
l	ı	ŀ		1											
	 	1							ľ						
	l	ł	· ·												
~	+		·	<u> </u>											
ل ا		1	1					Н				······································			
	 	1	 		 	-		\vdash							
Į.	1	ł	1	·				Н				· · · · · · · · · · · · · · · · · · ·		 -	
<u> </u>	 	├	 		 			Н							
1		1	Ì									· · · · · · · · · · · · · · · · · · ·			
ļ	 	┢		<u> </u>				Н							
l	Į.	•	Į.	•	 	Į I	ŀ	╟┈							
<u></u>		ļ				l	ŀ	Н					· · · · · · · · · · · · · · · · · · ·		
i i	1		l	l			ì	Ш							
L	1	1	<u> </u>	┞——	<u> </u>	l	l	Щ		.					
1	1		1	l		l	1	Ш	Ī						
L	1	<u>L</u>				ļ		Ш	ŀ						
						}	I	\square							
1		L	<u> </u>	L		•						·			
	1					l									
1	1	1	1	l	F	l		П							
_	1	 	 	1 -	i	1	1	П		[
I		I	l	l	 	1	l	H	Ī						
	 	1	 	 		1	ŀ	H	l .						
	1	1	1	l	 	İ	l	\vdash	•						
	 	₩			 	į .	S	Н							
1	1	1	1	Ī	<u> </u>	Ì	ł	\vdash	l ·						
L	<u> </u>			<u> </u>	<u></u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>					
								Berry Control							
NOT	ES:		ole interval							Logged by:		Judi Shapiro		_	
			ote interval		d for ana	lysis.			1		_				
		NR -	No reading	i						Drilling Contr	actor:	M&R Environmental Drill	ing	_	
		NA -	Not applica	ble											
			•							Driller:		Phil Thomsbury		_	
							_							-	
(FI	L SPECI	FICA	TIONS:				•								
	reen/Riser.				Scre	en Inter	val:	NA		5	Sandpack:	NA	Grout	NA	
						r Interva		NA			Bentonite:	NA	Cover.	NA	
E Otton	n of Hole:	4 ft		_	- 1136		e 1.								

,

ografit	nates:	•		EA Eng and T	echno	ology, l	nc.	·,			split spoon sar	nples cont	NORDIV, NAVF/ NCBC Davisvill -61 rig, pushing 2 in. inuous.	Boring No	sote Dip Ta	
Surface	e Elevations		-						- -		driven by 140- Drilling Water Date: Surface Condi	lb hammer Level:		Start 04/24/96 08:25 AN		Finish 04/24/96 08:40 AA
Sample Type	Driven/I Recvro	n. Cs	g.		PID (ppm) Above bk.		Strat. Unit	Ft bgs		USCS Log			SOIL DESC	RIPTION		00.40 //
SS	24	16 O	- 1	S-1 0-2	0.4	5 9		1			0-3" Fine to m 3-16" Silty fine	edium san e sand, littk	d, little coarse sand, y e coarse sand to suba	rellowish-orange, Ingular gravel to	, dry. 1 1/4", olive gra	ıy, dry.
ss	24	1 0	- 1	S-2 2-4	0.2	15 10 7 3		2			As above, grav	rel to 1", dr	у.			
		$oldsymbol{\perp}$	1			4		4								
		+	$\frac{1}{1}$													
•		1	1						E							
13.4													*			
_)		-	1						E							
		1	1													
			1													
		╁	+													
		1	+						E							
		1							E							
N OTE	 :s:			e interval							Logged by:		Judi Shapiro			
		NR	- N	e interval s to reading ot applica	bla	for anal	ysis.				Drilling Contro	actor:	M&R Environmenta Phil Thornsbury	l Drilling	-	
<i>)</i>	een/Rise			IONS:			en Inter		NA NA			Sandpack: Bentonite:	NA NA	Grout: Cover:	NA NA	

-

				EA E		6-					Job. No. Clien 29600.60		Location:	EBS 28	-l- A
				EA Eng		ng, se logy, l		,				NCBC Davisville e B-61 rig, pushing 2 in.	Boring No.	te Dip Tai	nk Area
				anu i	ecini	logy,	mc.				split spoon samples of			NAMED	
	Į.			LOG O	E 8011		NC				spire spoon samples of	onungous.		36-28-6B	
				roë o	- SOIL	. BUKI	110								
	oordir	natas:									Sampling Method: 2" (OD split-barrel sampler	000-	<u>58-010</u>	<u>, </u>
-									-		driven by 140-lb hamn			Sheet 1 of	4
		e Elevation: ser Elevation				· · · · · · · · · · · · · · · · · · ·			-		Drilling Water Level:	Not encountered			
	AAGU KI	SEL CIEADO	U11.						-		Date:	Time:	Start 04/24/96	Drilling	Finish
											Surface Conditions:	Grass/sand		Times	04/24/96
		i	5-4-	C A	212	I 61	C44	F 64	_	LICCO	Surface Conditions:	Grassisano	08:45 AM		09:00 AM
1	Sample		Dpth	Samp#	PID	Blows	Strat.	Ft	1	USCS					
1	Type		Csg.	/ depth	(ppm)	per	Unit	bgs		Log		CON DECODIE	TION		•
		Recyrd		(ft)	Above bk.	6"	<u> </u>	<u> </u>	L	ļ		SOIL DESCRIF			
1		24		S-1	_	1	l	0			0-4" Fine to medium s	and, little coarse sand to pea	sized gravel	, yellowish-ora	nge, dry.
1	SS	11	0	0-2	3	5		١.				trace medium to coarse sand,	piece of a	ngular 1" grave	el at
						9		1			bottom, olive gray,	ary.			
				0.0		12		١.			Cilb. Fro aged 5Me as	ama anna da anna da di L. H.	_ 40 4		
ı	-	24	1	S-2		4		2				arse sand to gravel to 1", botto	m 1" Wood,	possible stain	ing,
	SS	9	0	2-3.5	NR	7		Ι.			dark brown, moist.				
į						50/6"		3							
						-		١.							
								4					 -		
								į	ļ.,			·			
								1						·	[
								l							
		1						1	<u> </u>						
								l	\vdash		<u> </u>				
									\vdash						
	•								Н						
									Н						
			-			\vdash			H			•			
	,								Н						
_			-		-				Н						
_	_ ا								-						
1									\vdash						
į									H			····			
ĺ			\vdash			_			Н					·	
							li		Н			 ·			
1											· · · · · · · · · · · · · · · · · · ·				
									П						
													-		
									П						
		1													
									П						
														7	
															
								,							
									_		····				·
	NOTE			le interval							Logged by:	Judi Shapiro			
				le interval s	submitted	for anal	ysis.							•	
				No reading				*			Drilling Contractor:	M&R Environmental Drilling	ıg		
			NA - N	Vot applicat	ble										
											Driller:	Phil Thornsbury			
															
	1	. SPECIF		TIONS:											
	⊅ ia Scn	een/Riser:	NA				en Inten		NA		Sandpac		Grout:	NA	
	8 ottom	of Hole:	4 ft			Riser	Interva	d: .	NA		Bentonite	E NA .	Cover:	NA	

SS 24 S-2 S-5 S-11 0 2-4 1.1 5 S-11 S-11 S-11 S-11 S-11 S-11 S-11 S	
to dark brown at 14", dry. Second	
to dark brown at 14", dry. SS 11 0 2-4 1.1 5 Sitty fine sand, pieces of glass, ceramic, ash and wood, olive gray with band from 7-8", dry to moist at bottom 1". 15 3	
to dark brown at 14", dry. 24 S-2 5 2 Silty fine sand, pieces of glass, ceramic, ash and wood, olive gray with sand from 7-8", dry to moist at bottom 1".	
SS 16 0 0-2 10.4 6 0 0-2 10.4 6 0 0-3" Fine to medium sand, trace coarse sand to pea sized gravel, root orange, dry. 3-16" Slity fine sand, little medium sand, little subrounded gravel to 3	evel to 3/4", olive gray
ample Inches Dpth Samp # PID Blows Strat. Ft USCS Type Oriven/in. Csg. / depth (ppm) per Unit bgs Log Recvrd (ft) Above bk. 6" SOIL DESCRIPTION	MM 09:20 A

												S BY CL							
SAMPLE ID		EBS 22-S	S-15									EBS 28-SE	-01		B-01			EBS 28-S	B-02
SAMPLE INTERVAL		0-1'	_	0-2' [R	٠ .	2-4' [RI 9606125.		0-2' [R		2-4' [RI		0-2' 9606118	.	2-4'		0-2' [D	-• I	2-4'	_
LAB SAMPLE ID	Ï	960218 96026		9606122, 96065		96065		9606123, 96065		9606124, 96065		960659		960611 96065		9606119,		960612	· H
SDG #			-					11	- 1							96065		960659	
DATE COLLECTED		02/27/9		04/24/9	-	04/24/9	-	04/24/		04/24/9		04/24/90		04/26/9	•	04/24/9		04/24/9	14
DATE EXTRACTED	1	03/08/9		05/18/9	_	05/18/9	-	05/18/		05/18/9	· '	05/07/96	- 1	05/07/9		05/07/9		05/07/9	- 1
DATE ANALYZED	- 1	03/20/9	-	05/21/9		05/22/9		05/21/		05/21/9		05/21/90	5	05/21/9	-	5/21/96, 5/		05/21/9	- 11
SAMPLE MATRIX	į	SOIL	•	SOIL	,	SOIL	' :	SOIL	٠.	SOIL	'	SOIL		SOIL	'	SOIL		SOIL	, H
DILUTION FACTOR		1.0		1.0		1.0		1.0		1.0		1.0		10		20, 50		1.0	. I
PERCENT SOLIDS		89.1		85.9		81.0		83.0		88.0		92.0		87.0		90.1		91.6	
COMPOUND	CRQL	CONC		CONC		CONC		CONC		CONC		CONC		CONC	-	CONC		CONC	
	_	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q
Phenol	330	370	יט	380	נט	410	נט	400	נט	380	9	-				_		-	
bis(2-Chloroethyl)ether	330	370	U	380	נט	410	Û	400	U	380	נט	_				-		-	
2-Chlorophenol	330	378	U	380	נט	410	נט	400	UJ	380	UJ	1		-		-		-	
1,3-Dichlorobenzene	330	370	U,	380	IJ	410	UJ	400	UJ	380	נט	*		-				_	
1,4-Dichlorobenzene	330	370	Zu -	380	UJ	410	נט	400	ינט	380	נט	ł				-		4.5	
1,2-Dichlorobenzene	330	370	K	380	IJ	410	· UJ	400	(U	380	IJ	-							
2-Methylphenol	330	370	יש	380	IJ	410	נט	400	U	380	נט	-		-					
2,2'-oxybis(1-Chloropropane)	330	370	U	380	ַנט	410	נט	400	נט	380	נט	~		-		- -	1	-	
3 or 4-Methylphenol	330	370	ש	380	נט	410	UJ	400	עו ן	380	U	-		-		-	1		
N-Nitroso-di-n-propylamine	330	370	U	380	W	410	U	400	U	380	מ	-				-	1		
Hexachloroethane	330	370	U	380	U	410	U	400	UJ	380	ਧ				_		1	=	1
Nitrobenzene	330	370	U	380	W	410	U	400	UJ	380	ण						-	 	1
Isophorone	330	370	U	380	吹	410	UJ	400	UJ	380	U	-	_				 		1
2-Nitrophenol	330	370	U	380	UJ	410	UJ	400	(U	380	U)	-				 		 	11
2,4-Dimethylphenol	330	370	U	380	UJ	Q10	U	400	נט	380	UJ			-		1			1
bis(2-Chloroethoxy)methane	330	370	U	380	U	430	UJ	400	UJ	380	UJ	-		-	 		 		1
2,4-Dichl rophenol	330	370	U	380	U	410	UJ	400	U	380	U	-							
1,2,4-Trichlorobenzene	330	370	U	380	UJ	410	(U)	400	IJ	380	ण			 		 	 	├ 	1
Naphthalene	330	370	U	380	UJ	410	W	400	TO T	380	UJ	30	7	460	Ū	890	נט	44	tod
4-Chloroaniline	330	370	U	380	נט	410	UN	400	UJ	380	U	_	_			-	 -		 -
Hexachlorobutadiene	330	370	U	380	U	410	U	400	U	380	U		_		-	╿	 		┼{
4-Chloro-3-methylphenol	330	370	U	380	U	410	Ū	100	ਹਿ	380	U				 	 	 	 	
2-Methylnaphthalene	330	370	U	380	UJ	410	U	400	U	380	U		_				 		┝╌┤
Hexachlorocyclopentadiene	330	370	U	380	Ū	410	U	400	וט נ	380	U				-	 	 		
2,4,6-Trichl rophenol	330	370	U	380	UJ	410	U	400	WI	380	Ü		 		├──		├		
2,4,5-Trichlorophenol	800	900	Ū	930	Ü	990	Ū	960	UX.	910	Ü		-			 	 	J	
2-Chloronaphthalene	330	370	Ŭ	380	Ü	410	Ū	400	u	380	Ü		-		 	 	 		├ ─-
2-Nitroaniline	800	900	Ū	930	Ū	990	UJ	960	U	910	Ü			-	 				
Dimethylphthalate	330	370	Ť	380	UJ	410	נט	400	Ui	380	Ü	-	-			 	 _		├
Acenaphthylene	330	370	Ū	380	Ü	410	Ü	400	Ö.	380	0	54		800	UJ-	1600	ינט		
2.6-Dinitrotoluene	330	370	ΙŬ	380	u	410	Ü	400	Ü	380	(O)		-		1 03		UJ.	76	U
3-Nitroaniline	800	900	Ü	930	ਹੈਂ	990	Ü	960	l Ü	910	ष			<u> </u>	 	↓	ļ		igspace
Acenaphthene	330	370	T	380	0	410	Ü	400	Ui-	380				4200		2400	 	51	

		- en 15 - 5 5/	ST 17 1											LIAT AT'9			N 70-7	ranina sas ra	
SAMPLE ID		EBS 22-SS-15		EBS 22-SB-01		E8S 22-SB-01 2-4' (RE)		0-2' (RE)		EBS 22-SB-02 2-4' [RE]		N 1						EBS 28-SB-02	
SAMPLE INTERVAL		0-1'		0-2' [RE]		n - · •		H				0-2'		2-4'		0-2' [DL]		2-4'	
LAB SAMPLE ID		9602187		9606122, RE		9606125, RE		9606123, RE 960659		9606124, RE		9606118 960659		9606114		9606119, DL		9606120	
SDG #			960260		960659		960659			960655 04/24/9				96065		960659		960659	
DATE COLLECTED	,	02/27/9	-	04/24/96		04/24/96 05/18/96		04/24/96		05/18/9		04/24/90 05/07/90	_	04/26/9		04/24/96		04/24/96	
DATE EXTRACTED			03/08/96		05/18/96		-	05/18/96		05/18/9 05/21/9	- 1	05/21/9	-	05/07/9	-	05/07/96		05/07/96	
DATE ANALYZED	1	03/20/9		05/21/96		05/22/9		05/21/9		SOIL	-		•	05/21/9		5/21/96, 5/24/96			
SAMPLE MATRIX		SOIL	· [SOIL	'	SOIL	•	SOIL	'		•	SOIL		SOIL	•	SOIL		SOIL	
DILUTION FACTOR		1.0	j	1.0		1.0		1.0		1.0		.1.0 92.0		10		20, 50	,	1.0	
PERCENT SOLIDS	771070	89.1		85.9		81.0			83.0		88.0			87.0		90.1		91.6	
COMPOUND	CRQL	CONC		CONC	_	CONC ug/Kg	۱ ۸	CONC ug/Kg	اما	CONC ug/Kg	اما	CONC ug/Kg		CONC	_	CONC	ا ہا	CONC	
		ug/Kg	Q	ug/Kg	Q	990 990	Q	960 980	Q	910	9	MA VS	9	ug/Kg	Q	ug/Kg	Q	ug/Kg	0
2,4-Dinitrophenol	800	900	9	930 930	UJ UJ	990	UJ	960	9	910	6								╁┷┷╢
4-Nitrophenol	330	378	6	380	UJ	410	0 3	400	8	380	63				├—	<u> </u>		 	1
Dibenzofuran		370	-	380		410	U)	400	8	380	6				ļ			<u> </u>	lacksquare
2,4-Dinitrotoluene	330		9	380	UJ	410	07	400	ਲ	380	8		 					<u> </u>	↓ ∦
Diethylphthalate	330	370	4			410	0)	400	9	380	0)				<u> </u>			<u> </u>	↓ #
4-Chl rophenyl-phenylether	330	370	79	380	Ü					380					<u> </u>			<u> </u>	\bot
Fluorene	330	370	9	380	UJ	410	UJ	400	Ü	910	U	5.3	-	160	1	510	1	7.6	U
4-Nitroaniline	800	900	U	930	UJ	990	UJ	960	ហ	1	UJ		<u> </u>						
2-methyl-4,6-Dinitrophenol	800	900	U	930	U	990	נט	960	UJ	910	Ü								
N-Nitrosodiphenylamine	330	370	9	380	IJ	410	Ü	400	UJ	380	UJ	-							
4-Bromophenyl-phenylether	330	370	9	380	<u>a</u>	410	U	400	UJ	380	UJ							-	
Hexachl robenzene	330	370	9	380	Ø	410	O)	400	UJ	380	Ü								
Pentachlorophenol	800	900	٩	930	יט	990	U	960	עט	910	נט		L				<u> </u>		
Phenanthrene	330	370	0	380	U	410	U)	400	Ü	380	Ü	. 30	ļ	550	1	900	1	14	
Anthracene	330	370 370	4	380 380	UJ	410	נט	400	U	380 380	UJ	15	<u> </u>	150	1-	4600	1 3	40	
Di-n-butyl phthalate	330		4	380	10	410	UJ	400	101	380	UJ			-	<u></u>		<u> </u>		
Fluoranthene	330	370 370	4	380	נט	410	Q	400	O)	380	UJ	73		1600	1	2500		41	
Carbazole	330		9	380	Ü	410 410	W	400	U)		Ü				<u></u>				
Pyrene	330	41	-		UJ.		ינט		UJ	380	נט	70	L	1300	1	1700	13	37	
Benzyl butyl phthalate	330	370	Ü	380 380	O)	410	U	400	IJ	380	UJ					-			
3,3'-Dichlorobenzidine	330	370	U		UI	410	Ü	400	01	380	נט							'-	
Benzo(a)anthracene	330	370	Ü	380	Ü	410	UJ	400	IJ	380	O1	57		1200	1	590	,	11	
Chrysene	330	370	Ü	380	UJ	410	UJ	400	U	380	Ü	73		1200	J	1500	J	28	
bis(2-Ethylhexyl)phthalate	330	2100	O)	45	J	410	UJ	400	ष्	380	01	-		_				-	
Di-n-octylphthalate	330	370	01	380	5	410	UJ	400	עט	380	U								
Benzo(b)fluoranthene	330	41	7	380	UJ	410	01	400	01	380	נט	100		1200	J	680	1	17	
Benzo(k)fluoranthene	330	370	01	380	U	410	10	400	Ü	360	9	39		510	1	300	1	7.4	
Benzo(a)pyrene	330	370	10	380	0	410	U	400	U	380	נט	67		1600	J	330	1	8.2	
Indeno(1,2,3-cd)pyrene	330	370	03	380	U	410	נט	400	U	380	B	47		500	1	150	J	4.1	
Dibenz(a,h)anthracene	330	370	Ol	380	U)	410	01	400	8	380	V	9.0		150	1	44	נט	2.2	U
Benzo(g,h,i)perylene	330	370	UJ	380	UJ	410	. U J	400	Ü	380	5	87		840	J	280	1	6.4	

SAMPLEID		MAPINE PER	11/2			EBS 28-S				EBS 28-SE		EBS 30-S					5.073	EBS 30-S	E-171
SAMPLE ID		EBS 28-SB-03		2-3.5' [DL]		0-2'		2-4'		2-4' (DUP)		0-1'		0-1'		0-1		0-1', DUP	
SAMPLE INTERVAL LAB SAMPLE ID		960611	3	9606121.	- 1	960611	5	960611		9606117.		960232	7	960232	8	9602343		9602349	
SDG #		960659		960659		960659	- 1	960659	-	960659		960270		960270		96027	_	960274	
DATE COLLECTED	04/26/9	-	04/24/9		04/26/9		04/26/9		04/26/90		02/28/9		02/28/9	,	02/29/9	-	02/29/96		
DATE EXTRACTED		05/07/9		05/07/9		05/07/9		05/07/9		05/07/9		03/11/9		03/11/9		03/11/9		03/11/96	
		05/07/3	_	5/21/96, 5/23/96		05/21/9		05/21/9		5/21/96, 5/2	-	03/22/9		03/22/9		03/25/9		03/25/96	
DATE ANALYZED SAMPLE MATRIX		SOIL		SOIL		SOIL	- ,	SOIL		SOIL	0170	SOIL		SOIL		SOIL		SOIL	
DILUTI N FACTOR		1.0			1.0. 10		'	20		20, 50		1.0	,	1.0		1.0		1.0	
PERCENT SOLIDS		94.5	;		84.0		20 91.8			81.0		90.8		90.0		93.3%		95.0%	
COMPOUND	TCROL	CONC		CONC		CONC		CONC		CONC		CONC		CONC		CONC		CONC	
COMPOUND	CRUL	ug/Kg	Q	ug/Kg	Q	ng/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q
Phenol	330	-	-		-		<u> </u>		<u>`</u>	-	<u> </u>	360	Ò	370	Ù	350	Ù	350	10
bis(2-Chloroethyl)ether	330		_	-				-				360	U	370	0	350	U	350	U
2-Chlorophenol	330		 	-					_	-		360	Ū	370	Ū	350	Ū	350	Ū
1.3-Dichlorobenzene	330		 	 	_		<u> </u>			-	 	360	Ū	370	Ū	350	Ū	350	Ū
1.4-Dichlorobenzene	330		 		 			'	 		 	360	Ū	370	Ū	350	Ū	350	Ü
1,2-Dichl robenzene	330		 	-					_			360	ΚŪ	370	Ū	350	Ù	350	10
2-Methylphenol	330	-	 			-			_		 	360	V	370	Ŭ	350	Ū	350	t
2,2'-oxybis(1-Chloropropane)	330		 	 	-	 		-		-	├─	360	<u></u>	370	Ū	350	Ū	350	l ö -
3 or 4-Methylphenol	330		<u> </u>	1	-			-		-	—	360	0	370	Ť	350	١Ū	350	Ū
N-Nitroso-di-n-propylamine	330			1	 	1	1			 	1	360	Ū	370	Ū	350	١ ٠	350	TŪ-
Hexachloroethane	330	 	_	 	-		1	-		 	t	360	Ū	370	U	350	to	350	Ū
Nitrobenzene	330	-	1	 	 	 	1	-	1	-		360	U	370	u	350	U	350	U
Isophorone	330	-	1	-			1	-		1 -		360	U	370	U	350	U	350	ਹ
2-Nitrophenol	330	-	1	-		-				-		360	U	370	K U	350	U	350	U
2,4-Dimethylphenol	330	-		-		-		-		-		360	U	370	V	350	U	350	U
bis(2-Chloroethoxy)methane	330	-		-				-				360	ט	370	O	350	U	350	U
2,4-Dichlorophenol	330	-						-				360	U	370	U	350	U	350	U
1,2,4-Trichlorobenzene	330	_		-		-					Ι	360	U	370	U	350	U	350	U
Naphthalene	330	42	ש	140	1	870	UJ	990	O	550	1	360	U	370	U	320	U	350	U
4-Chloroaniline	330	-		-				-		-		360	U	370	U	350	U	350	U
Hexachlorobutadiene	330	_								-		360	U	370	U	350	Ü	350	U
4-Chloro-3-methylphenol	330											360	U	370	U	350	U.	350	ַט
2-Methylnaphthalene	330	-			L.					-		360	U	370	U	350	W.	350	ט
Hexachl rocyclopentadiene	330		<u> </u>	-			<u> </u>					360	U	370	U	350	R	350	U
2,4,6-Trichlorophenol	330			<u> </u>						-		360	U	370	U	350	יט	350	U
2,4,5-Trichlorophenol	800						<u> </u>		<u> </u>			880	U	890	U	860	U	840	U
2-Chloronaphthalene	330	-						-		-		360	ט	370	U	350	ט	350	U
2-Nitroaniline	800	-		-			<u> </u>					880	U	890	U	860	U	8x0.	U
Dimethylphthalate	330	-				-				-		360	ט	370	ט	350	U	350	U
Acenaphthylene	330	74	U	75	1	1500	101	1700	נט,	1700	UJ	360	ט	370	Ū	350	U	350	U
2,6-Dinitrotoluene	330							-		-		360	Ū	370	U	350	U	350	V
3-Nitroaniline	800		<u> </u>		<u></u>							880	U	890	U	860	U	840	N
Acenaphthene	330	42	U	1400	J	800	J	9200	1	21000	1	360	ט ן	370.	U	350	U	350	U

SAMPLE ID		EBS 28-9	12.713							EBS 28-SP						EBS 30-S	N 897	I RIDIN SIN S	45 69 1
SAMPLE INTERVAL		0-2'		2-3.5' [DL]		0-2'		2-4		2-4'		0-1'		0-1'		0-1		EBS 30-SS-03 0-1', DUP	
LAB SAMPLE ID		9606113		9606121, DL		9606115		9606116		9606117, DL		9602327				9602343		H ' 11	
SDG #		960659		960659		96065	-	960659		960659		96027		9602328 960270		n		9602349	
DATE COLLECTED		04/26/	-	04/24/96		04/26/9		04/26/9	-	04/26/9		02/28/9		02/28/		960274 02/29/96		960274	
DATE EXTRACTED	•	05/07/		05/07/9	-	05/07/9	-	05/07/9		05/07/9	- 1	03/11/9		03/11/		02/25/3	-	02/29/96	
DATE ANALYZED	l				- 1	05/21/9		05/21/9			-	03/11/	-	03/11/		H		03/11/96	
SAMPLE MATRIX		SOIL		5/21/96, 5/23/96 SOIL		SOIL		SOIL		5/21/96, 5/23/96 SOIL		SOIL	. •	SOIL	-	03/25/96		03/25/96	
DILUTION FACTOR		1.0	•	1.0, 10		20	,	20	,	20, 50			•	H	•	SOIL	•	son	
PERCENT SOLIDS	1	94.5			•	91.8						1.0		1.0		1.0		1.0	
COMPOUND		CONC		84.0				81.0		81.0		90.8		90.0		93.3%		95.0%	
COMPOUND	CRQL		١,	CONC	_	CONC	_	CONC		CONC	ٔ ہ ا	CONC		CONC		CONC		CONC	
2.4-Dinitrophenol		ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q	ug/Kg	Q
	800	-	 					-	· · ·			880	U	890	U	860	ט	840	ט
4-Nitrophenol Dibenzofuran	800 330				<u> </u>			<u> </u>	<u> </u>		<u> </u>	880	U	890	U	860	U	840	ט
2.4-Dinitrotoluene	330		-					<u> </u>	 			360 360	Ų	370 370	U	350	U	350	
Diethylphthalate	330		<u> </u>		 		 		<u> </u>	<u> </u>	 -		Ü		U	350	U	350	ן ט
			├ ─	<u> </u>	<u> </u>		├	↓	-		<u> </u>	360	U	370	U	350	U	350	ט
4-Chlorophenyl-phenylether Fluorene	330 330	7.4	 	38	ļ.,	140	L.	180	<u> </u>			360	Za	370	U	350	U	350	U
4-Nitroaniline	800		ט		1				! -	110	1	360	B	370	U	350	ט	350	ט
	800		<u> </u>	-				-	 			880	0	890	U	860	U	840	
2-methyl-4,6-Dinitrophenol				<u> </u>		<u> </u>		<u> </u>	<u> </u>	-		. 880	U	890	U	860	U	840	ט
N-Nitrosodiphenylamine	330		-		<u> </u>		<u> </u>		<u> </u>		ļ.,,	360	U	370	U	350	U	350	O
4-Bromophenyl-phenylether	330		.		<u> </u>			<u> </u>	L	<u> </u>		360	U	370	U	350	U	350	٦
Hexachlorobenzene	330		ļ						<u> </u>			360	U	370	O	350	U	350	TU
Pentachlorophenol	800				<u> </u>			-				880	ט	890	1 D	860	ט	840	U
Phenanthrene	330	6.4	J	300	3	280	J	1600	1	1600	1	110		370	V	350	U	350	ט
Anthracene	330	5.2	1	92	J	300	1	430	1	800	1	360	U	370	O.	350	U	350	ם ו
Di-n-butyl phthalate	330	-				-		-		-	Г	360	U	370	0	18	7	350	10
Fluoranthene	330	17	1	480	J	930		1900	1	2800	1	220	1	370	U	350	U	350	ו ט
Carbaz le	330	-		-		-		-		-		360	U	370	U	350	0	350	U
Pyrene	330	13	1	360	1	2200	1	1300	1	2300	1	160	1	370	U	358	U	350	l ŭ l
Benzyl butyl phthalate	330	-		-		-		-		-		360	U	370	U	350	0	350	10
3,3'-Dichlorobenzidine	330	-		-		-						360	U	370	U	350	Ū	350	l ŏ l
Benzo(a)anthracene	330	4.4		230	1	1100	7	1300	1	2700	1	58	1	370	Ū	350	V	350	انا
Chrysene	330	15	1	300	1	1400	1	1300	J	2700	1	99	1	370	Ū	350	0	350	 0
bis(2-Ethylhexyl)phthalate	330			-		-		-	<u>, </u>	-		360	Ū	370	Ū	350	0	350	l ŏ l
Di-n-octylphthalate	330	-	·			-						360	Ū	370	Ū	350	נט	350	 0
Benzo(b)fluoranthene	330	7.8		330	1	1800	1	1800	1	3800	1	150	Ť	370	l o	350	Ü	350	0
Benzo(k)fluoranthene	330	2.9		99	1	820	7	690	7	1500	1	48	Ť	370	Ŭ	350	TÜ	350	 0
Benzo(a)pyrene	330	3.6	J	280	1	1400	7	2200	7	2700	1	72	Ť	370	 0	350	UI	350	Ü
Indeno(1,2,3-cd)pyrene	330	1.7	1	130	7	490	1	800	1	1600	1	360	l o	370	Ü	350	Ü,	350	kui l
Dibenz(a,h)anthracene	330	2.1	U	32	1	88	1	210	j	420		360	Ŭ	370	١ ٠	350	03	350	1
Benzo(g,h,i)perylene	330	3.2	1	240	7	700	j	1400	1	2700	ارزا	360	Ü	370	0	350	103	350	
					لينيا		سنسا			2,00	,	, 700		3/0		330	נט	טכנ	m

Appendix A-2

Review Item 60 (Septic Tanks Building E-107) Geophysical Survey, Figures, and Analytical Data Summary Tables

GEOPHYSICAL INVESTIGATION NCBC DAVISVILLE DAVISVILLE, RHODE ISLAND

Prepared for:

EA Engineering, Science and Technology, Inc. Sharon Commerce Center 2 Commercial Street, Suite 106 Sharon, Massachusetts 02067

Prepared by:

Hager GeoScience, Inc. 63 Gregory Street Waltham, Massachusetts 02154-2105

File 96022 April 1996

April 11, 1996 File 96022

Ms. Jane Connet EA Engineering, Science, and Technology, Inc. Sharon Commerce Center 2 Commercial Street, Suite 106 Sharon, MA 02067

Re: Geophysical Investigation

NCBC Davisville Davisville, RI

EA Project No. 296.0060.2200

Dear Ms. Connet:

This letter report summarizes the results of a geophysical investigation conducted by Hager GeoScience, Inc. (HGI) for EA Engineering, Science, and Technology, Inc. (EA) at NCBC Davisville in Davisville, Rhode Island. The investigation, performed March 19 through 22, 1996, was part of the EBS Phase II Review Item Work Plan Implementation at the former Naval Base. The location of the site is shown on Figure 1. Surveys were performed at 15 sites on the facility, in the areas labeled Zones 1,2,3 and West Davisville on Figure 1. The objective of the investigation was to help locate possible abandoned septic tanks and associated piping.

PROCEDURE

Three complementary geophysical techniques were used to perform the geophysical investigation: ground penetrating radar (GPR), EM terrain conductivity, and magnetics. GPR was used as the primary technique to locate and determine the approximate size and burial depth of septic tanks. As GPR signal penetration is often limited by conductive soils and/or brackish groundwater, at appropriate sites GPR was combined with EM terrain conductivity and magnetics to better locate areas of reinforced concrete and buried metal, as well as to determine whether GPR anomalies were metallic. Terrain conductivity was also used to help locate potential conductive zones associated with water conditioners and other septic system by-products.

Survey grids were established at each site with the assistance of EA's Joe Friesen and Judi Shapiro; the grids were oriented parallel and perpendicular to existing buildings and other cultural features using fiberglass tape. Grid nodes were staked and/or marked on the ground with water-soluble spray paint for later reference by EA. GPR data were collected generally along traverses 2.5 feet apart in two perpendicular directions. However, both the locations and spacing of lines were adjusted in the field on the basis of accessibility and preliminary on-site interpretation. Figures 2 through 15 show the areas of survey.

METHOD OF INVESTIGATION

Ground Penetrating Radar (GPR)

A GSSI SIR System 2 digital radar instrument with a 400-megahertz (MHz) antenna was used for the investigation. GPR data were collected continuously along survey lines and displayed on a color monitor. GPR data were simultaneously recorded on a 500-Mbyte hard drive for later processing and interpretation. The horizontal scale on each GPR record is determined by the antenna speed. Survey stations are recorded on GPR records by pressing a marker button as the center line of the antenna passes each grid node (at 5-foot intervals for this survey). The vertical scale of these radar "cross-sections" is determined by the recording interval, which was 80 to 90 nanoseconds for this survey. The recording interval represents the maximum two-way travel time in which data are recorded. GPR travel times were converted to depths using GPR propagation velocities determined at similar sites.

The GPR method operates by transmitting low-powered microwave energy into the ground. In this instance, the energy has a center wave frequency of 400 MHz, depending on the soil properties. The GPR signal is reflected back to the antenna by materials with contrasting electrical (dielectric and conductivity) and physical properties. Metal objects such as USTs or utilities typically produce high-amplitude hyperbolic reflections on GPR records. Clay or concrete pipes and boulders produce similar radar signatures. Concrete septic tanks or slabs produce a flat, high-amplitude reflector on the radar records.

EM Terrain Conductivity

The terrain conductivity survey was conducted using a Geonics Model EM31-DL terrain conductivity meter. This induction-type instrument measures terrain conductivity without electrodes or direct soil contact. The meter is calibrated to read ground conductivity directly in millimhos per meter (mmhos/m), with a resolution of 1 mmho/m. The transmitting and receiving coils in the EM31-DL have a fixed separation of 3 meters. When used in its normal operating (vertical dipole) mode, the EM31 achieves a penetration depth of about 20 feet. Buried metal objects are typically indicated by negative or erratic and high conductivity values. The instrument response is more affected by near-surface than by deeper material.

Magnetics

The magnetics survey was performed using a Geometrics G-856 proton precession magnetometer. This instrument contains a microprocessor capable of storing data for approximately 1,000 stations, and it can collect data at each station in 10 to 20 seconds. The instrument has a sensitivity of 0.1 gamma.

The magnetic method measures the total magnetic field strength of the earth. It works on the principle that ferrous (iron or steel) objects cause localized perturbations in the earth's total magnetic field that are measurable with the magnetometer. The magnetic method detects buried steel and iron objects, such as underground storage tanks and drums, to a depth of approximately 25 feet.

SURVEY LIMITATIONS

Ground Penetrating Radar (GPR)

GPR signal penetration is site specific, determined by the dielectric properties of concrete and local soil and fill materials. GPR signals propagate well in resistive materials such as unsaturated sand and gravel. However, soils containing clay, ash- or cinder-laden fill, or fill saturated with brackish or otherwise conductive groundwater, cause GPR signal attenuation and loss of target resolution (i.e., limited detection of small objects). GPR signal penetration may also be limited in soils filled with metal scrap or construction debris, as the signal is scattered and redirected to the surface at the soilmetal (or soil-concrete) interface.

Interpreted depths shown on Figures 2 through 16 and stated in this report are based on estimated GPR signal propagation velocities from similar sites. Note that GPR velocities, and therefore estimated depths, may vary if the medium of investigation or soil water content is not uniform throughout the site. (Electromagnetic waves do not travel as fast through water as air, so the distance to a reflector below the water table may appear farther than in actuality.)

GPR is an interpretive method, based on the subjective identification of reflection patterns that may not uniquely identify a subsurface target. Obtaining data along multiple survey traverses helps to determine the size and shape of buried targets. Nevertheless, interpretation of GPR data is more subjective than that for most other geophysical methods, and we recommend confirming GPR results with other geophysical methods or through borings or test pits.

Changes in the speed at which the antenna is moved between stations causes slight variations in distance interpolations, and hence interpreted object positions. Although unlikely, these variations may exceed +/-1.0 foot for this survey. Such interpolation variations were minimized during this survey by using 5-foot distance marks.

The antenna produces a cone-shaped signal pattern that emanates approximately 10 to 15 degrees from horizontal fore and aft of the antenna. Therefore, buried objects may be detected before the antenna is located directly over them, and GPR anomalies may appear larger than actual target dimensions, especially if the target is located at depth.

EM Terrain Conductivity/Magnetics

Terrain conductivity and magnetic surveys are subject to cultural interference from overhead power lines and surface metal objects, such as cars, trucks, buildings, fences, etc., that may mask objects at depth. Buried utilities also produce elevated or negative conductivity values that may obscure other objects of interest.

The shape and amplitude of magnetic and EM anomalies do not uniquely describe a buried object or material, as these anomalies often appear larger than the buried object(s). Also, the shape and amplitude of anomalies are influenced by the orientation of survey lines and the buried object(s) relative to north, and by the orientation of the EM31 coils relative to the buried object(s).

Hager GeoScience, Inc.

Closely-spaced buried utilities may produce magnetic and terrain conductivity anomalies that interfere with one another (i.e. the anomalies overlap, producing a different signature). Hence, in areas where numerous utilities are present, the observed anomaly may result from an interference pattern and may not uniquely describe the location of a specific utility.

Smaller utilities, or utilities constructed from reinforced concrete, may be masked by larger utilities constructed of metal. Terrain conductivity or magnetics will not detect utilities constructed from PVC, clay, or unreinforced concrete.

RESULTS

The results of the geophysical investigation are shown on Figures 2 through 16. GPR surveys was performed at all 15 of the sites. The GPR signal penetrated approximately 8 to 12 feet below grade at sites where the water table was 7 to 8 feet deep. Magnetic and EM terrain conductivity data were collected at sites that were open and at least 25 feet from above-ground metal objects, such as buildings, overhead power lines, and dumpsters. The survey results are summarized by area below.

ZONE 1: EBS 40, 41A, 41B, 42, AND 72

Site EBS 40 (Figure 2)

Site EBS 40 is located approximately 150 feet southeast of Building 404, at former Building 49, adjacent to Kingston Street. GPR detected several flat, high-amplitude reflectors interpreted as caused by concrete. The majority of these reflectors is attributed to old foundations. Flat GPR reflectors detected approximately 1 foot below ground along Lines 0+07.5E and 0+10E, Stations 0+12.5N through 0+17.5N, and along Line 0+15N, Stations 0+07.5E through 0+12.5E, are attributed to a septic tank. EM conductivity and in-phase anomalies were observed at the same location as this flat GPR reflector. A weak magnetic anomaly was also observed at Station 0+14N, 0+10E.

Site EBS 41A (Figure 3)

Site EBS 41A is located about 50 feet north of Davisville Road, near former Building 118, and about 100 feet west of Building S-85. Two septic tanks were reportedly removed from this site. GPR detected several large reflectors approximately 7 feet below ground, as well as two smaller anomalies approximately 2 feet below ground. The anomalies detected along Lines 0+07.5E through 0+12.5E, Stations 0+12.5N through 0+16N, are attributed to remnants of a septic system, or possibly a large pipe. An EM conductivity anomaly is centered at Station 0+11N, 0+12.5E, nearly coincident with the GPR anomaly observed there. This anomaly is also apparent in the contoured EM in-phase data.

Site EBS 41B (Figure 4)

Site EBS 41B is located about 100 feet north of Site EBS 41A and 40 feet northwest of Building S-85. The site is bounded on the south by two large reinforced concrete slabs associated with a former building. Because of reinforced concrete and some demolition debris, GPR penetration was limited to about 5 feet. Three flat GPR reflectors, attributed to concrete, were detected along Lines 0+00N

and 0+02.5N, Stations 0+08E through 0+12.5E, and Line 0+12.5E, Stations 0+00N through 0+02.5N, approximately 4 feet below ground. These reflectors may be caused by a septic tank or a buried concrete slab from the former building. An EM conductivity, but no in-phase or magnetic anomaly, was observed near this possible septic tank. GPR also detected a utility parallel to Line 0+20N approximately 2 feet below ground.

Site EBS 42 (Figure 5)

Station 0+00N, 0+00E of Site EBS 42 is located 10 feet north and 15 feet east of the northwest corner of Building 43. Only the GPR method was used at Site EBS 42, since the site is bisected from east to west by a fence at 0+09N. Numerous utilities were also detected. GPR detected several large, flat reflectors probably caused by a concrete slab 8 inches to 1 foot below ground along Lines 0+10N through 0+17.5N, Stations 0+12.5E through 0+18E. This concrete slab may be associated with a septic tank.

Site EBS 72 (Figure 6)

Station 0+00N, 0+00E is located 35 feet east and 25 feet south of the northeast corner of Building 43. Concrete pavement at the site limited GPR signal penetration to 4 to 5 feet below ground. Two large, flat GPR reflectors were detected approximately 3 feet below ground along Lines 0+12.5E through 0+15E, Stations 0+11N through 0+15N. These reflectors may be caused by a septic tank. Reflectors interpreted as a utility were observed trending north-south at 0+15.5E, toward the possible septic tank. An EM conductivity anomaly is centered over this GPR anomaly. Large GPR reflectors of uncertain origin were detected at the eastern edge of the survey grid. EM conductivity and in-phase anomalies were observed at Station 0+02.5N, 0+05E; GPR and magnetic anomalies were not observed in this area.

ZONE 2: EBS 44, 49, AND 52

Site EBS 44 (Figure 7)

Station 0+20N, 0+15E of Site EBS 44 is located 20 feet north of Building 67. Several flat GPR reflectors possibly caused by concrete structures were observed in the survey area. One set of anomalies, centered at Station 0+32.5N, 0+10E, may be caused by a septic system 3 feet below ground. Other reflectors characteristic of concrete, located 2 feet below ground, were detected immediately north of an east-west trending utility at 0+28N.

Site EBS 49 (Figure 8)

Site EBS 49 is located immediately south of Warehouse W-1, a large corrugated metal building. Thus EM31 and magnetic surveys were not performed. A possible septic discharge pipe was observed at the building edge, at Station 0+20N, 0+22E. GPR detected a pipe at 0+22E trending south from the building as far as Station 0+10N. Large, flat GPR reflectors, interpreted as caused by a septic tank, were detected approximately 2 feet below ground along Lines 0+20E through 0+25E, Stations 0+10N through 0+13N. A utility was also detected approximately parallel to 0+05N.

Site EBS 52 (Figure 9)

Site EBS 52 is located 140 feet north of a hydrant, 170 feet north of Building 38, and about 300 feet south of Davisville Road. High-amplitude, flat GPR reflectors, interpreted as caused by a septic tank, were detected approximately 2.5 feet below ground along Lines 0+27.5E through 0+32.5E, Stations 1+52.5N through 1+57.5N, and along Lines 1+52.5N through 1+57.5N, Stations 0+27.5E through 0+32.5E. EM conductivity and in-phase anomalies were observed at the same location. Magnetic data indicate a possible buried metal object near 1+47.5N, 0+15E, a location that does not coincide with that of the interpreted septic tank. GPR also detected low-amplitude, flat reflectors of uncertain origin approximately 2 feet below ground near 1+52.5N, 0+20E.

ZONE 3: EBS 53, 56A (EBS 24), 56B, 60, AND 87/60

Site EBS 53 (Figure 10)

Site EBS 53 is located in a heavily wooded area, near the former location of Building 218. High-amplitude, flat GPR reflectors were observed at two locations in the survey area. Reflectors observed approximately 3 feet below ground along Lines 0+00E and 0+02.5E, Stations 0+01N through 0+04N, may be caused by a septic tank. A pipe was detected immediately north of this feature. Other high-amplitude reflectors, detected 2 feet below ground near 0+15N, 0+25E at the edge of the survey grid, may also be caused by a septic tank. A utility was also detected near this location, trending east-west at Line 0+12.5N. Magnetic data for Site EBS 53 were inconclusive.

Site EBS 56A(EBS 24) (Figure 11)

Site EBS 56A is located immediately north of Building S-41, of which the northeast corner corresponds to Station 0+05N, 0+00E. GPR was the only geophysical method used because of the proximity of the survey area to Buildings S-41 and 224. A concrete structure, interpreted as a septic tank, was detected by GPR approximately 4 feet below ground along Lines 0+12.5E through 0+15E, Stations 0+07.5N through 0+11N. The GPR record of this structure is shown in Figure 16. Numerous utilities were also detected. A pipe trending east-west roughly parallel to 0+13.5N appears to be related to the catch basin at Station 0+15N, 0+02.5E.

Site EBS 56B (EBS 56) (Figure 11)

Site EBS 56B is located immediately north of Building 224. A clean-out, possibly associated with a dry well, corresponds to grid coordinate 0+09N, 0+70E. A large reflector was detected approximately 4 feet below ground at Station 0+21N, 0+95E. The anomaly is localized, however, and we judge it unlikely to be caused by a septic tank. Other GPR reflectors indicative of a concrete structure or septic tank were not observed. However, an area of excavation possibly associated with a former buried structure was detected along Lines 0+10N through 0+15N, Stations 0+67.5E and 0+70E.

Site EBS 60 (Figure 12)

Site EBS 60 is located immediately east of building E-107, the southeast corner of which corresponds to Station 0+00N, 0+00E. GPR was the only geophysical method used because of the proximity of the corrugated metal building and a dumpster. The GPR signal penetrated only about 7 feet below ground because of the high water table and proximity of the site to the ocean. Large GPR reflectors possibly caused by a septic tank were observed approximately 6 feet below ground at Station 0+07.5N, 0+05E. Other localized GPR anomalies were observed along Lines 0+05N and 0+07.5N. Numerous utilities were also detected.

Site EBS 77 (Figure 13)

Site EBS 77 is located immediately north of Flammable Storage Building 299, the northwest corner of which corresponds to Station 0+00N, 0+00E. The purpose of the survey was to trace a possible septic pipe trending north from the building. Only GPR was used because of the dense brush and limited space. Traverses were made perpendicular to the apparent trend of the pipe, which was detected approximately 2 feet below ground along Lines 0+02.5N through 0+22.5N, 0+02.5E. The pipe appears to jog slightly westward between Lines 0+22.5N and 0+70N, as it was detected at approximately 0+05W along Lines 0+70N and 0+80N. The pipe was not detected along Line 1+60N, immediately north of the catch basin. Dense brush prevented confirmatory GPR traverses from being made between Lines 0+80N and 1+60N.

Site EBS 87/60 (Figure 14)

Site EBS 87/60 located approximately 50 feet east of Building 365 and 30 feet east of the catch basin. Several high-amplitude, flat GPR reflectors were detected 2 feet below ground along Lines 0+22.5N through 0+30N, Stations 0+05E through 0+12.5E. These reflectors may be caused by a concrete structure, possibly a septic tank. EM conductivity and in-phase data show anomalies near this possible septic tank, but no magnetic anomalies were observed. A pipe was detected trending roughly parallel to 0+04E. No reflectors indicative of a septic tank were detected elsewhere in the survey area.

WEST DAVISVILLE

Site EBS 36 (Figure 15)

Station 0+10N, 0+12.5E of Site EBS 36 is located approximately 30 feet south of a corrugated metal shed. Because a wooden septic tank was reportedly present at this location, GPR was the only geophysical method used. GPR reflectors attributed to a septic tank were observed along Lines 0+07.5N through 0+12.5N, Stations 0+10E through 0+15E. We judge that the GPR anomaly, observed 5 feet below ground, is caused by the reflection of the GPR signal off a water-saturated wooden cover or its reverberation within the air space of the septic tank.

RECOMMENDATIONS

We recommend test pits to confirm geophysical results, especially in those areas where GPR was the only geophysical method used. All invasive work should proceed with caution, as the geophysical investigation may not have detected all the utilities present. We recommend excavating test pits at the following locations:

0+15N, 0+10E:	Probable septic tank
0+13N, 0+10E:	Possible septic tank or remnant
0+01.5N, 0+11E:	Possible septic tank
0+14N, 0+17.5E:	Near-surface concrete slab; possible septic tank
0+12.5N, 0+12.5E:	Possible septic tank
0+32.5N, 0+10E:	Possible concrete pad or tank
0+12.5N, 0+22E:	Probable septic tank
0+54N, 1+31E:	Possible septic tank
0+2.5N, 0+02.5E:	Possible septic tank
0+15N, 0+25E:	Possible septic tank
0+10N, 0+13E:	Probable septic tank
	Not observed; clean-out at 0+09N, 0+70E
0+07.5N, 0+05E:	Possible septic tank
0+02.5N - 0+80N:	Pipe at Stations 0+02.5E to 0+05W
) :	•
0+25N, 0+10E:	Possible concrete or septic tank
0+10N, 0+12.5E:	Probable septic tank
	0+01.5N, 0+11E: 0+14N, 0+17.5E: 0+12.5N, 0+12.5E: 0+32.5N, 0+10E: 0+12.5N, 0+22E: 0+54N, 1+31E: 0+2.5N, 0+02.5E: 0+15N, 0+25E: 0+10N, 0+13E: 0+07.5N, 0+05E: 0+02.5N - 0+80N: 0+25N, 0+10E:

Please call us at (617) 893-9700 if you have any questions regarding this report. We have appreciated the opportunity to work with EA and hope to do so again in the near future.

Respectfully yours,

HAGER GEOSCIENCE, INC.

Doria Kutrubes Senior Geophysicist

Jutta L. Hager, Ph.D.

President

Map provided by EA. Source: USGS East Greenwich and Wickford Quadrangle - Rhode Island, 1942 (photorevised 1970 & 1975).

Original Scale: 1:24000

FIGURE 1
LOCATION OF THE SITE
NCBC DAVISVILLE
DAVISVILLE, RHODE ISLAND
Prepared for
EA ENGINEERING, SCIENCE, AND TECHNOLOGY
APRIL 1996

EXPLANATION

- --- GPR Traverse
- GPR Point Target (metal scrap, cobble, utility)
- --- Interpreted Utility
- Possible Concrete Structure and Approx. Depth in Feet
- Interpreted Septic Tank

NOTES:

- 1) Plan based on sketch from field notes.
- 2) EM31 conductivity contour interval is 2.5 mmhos/m (mmho/m).
- EM31 in-phase contour interval is 0.5 part per thousand (ppt).
- 4) Magnetic contour interval is 100 gammas.
- 5) Interpreted depths are based on estimated GPR propagation velocities from similar sites (see text).

SCALE: 1 Inch = 10 Feet

FIGURE 4
INTERPRETED GEOPHYSICAL RESULTS
SITE EBS 41B
DAVISVILLE, RHODE ISLAND
Prepared for
EA ENGINEERING, SCIENCE, AND TECHNOLOGY
APRIL 1996

Building 43

EXPLANATION

--- GPR Traverse

GPR Point Target (metal scrap, cobble, utility)

- --- Interpreted Utility
 - Possible Concrete Structure and Approx. Depth in Feet
 - Interpreted Septic Tank

NOTES:

- 1) Plan based on sketch from field notes.
- 2) Interpreted depths are approximate, based on estimated GPR propagation velocities from similar sites (see text).

SCALE: 1 Inch = 10 Feet

FIGURE 5
INTERPRETED GEOPHYSICAL RESULTS
SITE EBS 42
DAVISVILLE, RHODE ISLAND
Prepared for
EA ENGINEERING, SCIENCE, AND TECHNOLOGY
APRIL 1996

- 1) EM conductivity, in-phase, and magnetic contour intervals are as marked.
- 2) Interpreted depths are approximate, based on estimated GPR propagation velocities from similar sites (see text).

SCALE: 1 Inch = 10 Feet

EXPLANATION

— GPR Traverse

GPR Point Target (metal scrap, cobble, utility)

___Interpreted Utility

Possibl Concrete Structure and Approx. Depth in Feet

Interpreted Septic Tank

FIGURE 6
INTERPRETED GEOPHYSICAL RESULTS
SITE EBS 72
DAVISVILLE, RHODE ISLAND
Prepared for
EA ENGINEERING, SCIENCE, AND TECHNOLOGY
APRIL 1996

Warehouse W-1

NOTES:

- 1) Plan based on sketch from field notes.
- 2) Interpreted depths are approximate, based on estimated GPR propagation velocities from similar sites (see text).

EXPLANATION

- **GPR Traverse**
- GPR Point Target (metal scrap, cobble, utility)
- Interpreted Utility
- Possible Concrete Structure and Approx. Depth in Feet
- Interpreted Septic Tank

SCALE: 1 Inch = 10 Feet

FIGURE 8
INTERPRETED GEOPHYSICAL RESULTS
SITE EBS 49
DAVISVILLE, RHODE ISLAND
Prepared for
EA ENGINEERING, SCIENCE, AND TECHNOLOGY
APRIL 1996

170 10 20 30 40 170 160 160 150 150 Easting (feet)

CONDUCTIVITY

EXPLANATION

- GPR Traverse
- GPR Point Target (metal scrap, cobble, utility)
- --- Interpreted Utility
 - Possible Concrete Structure and Approx. Depth in Feet
 - Interpreted Septic Tank

NOTES:

- 1) Plan based on sketch from field notes.
- 2) EM31 conductivity contour interval is 0.5 millimho per meter (mmho/m).
- 3) EM31 in-phase contour interval is 1 part per thousand (ppt.)
- 4) Magnetic contour interval is 50 gammas.
- 5) Interpreted depths are based on estimated GPR propagation velocities from similar sites (see text).

SCALE: 1 Inch = 20 Feet

FIGURE 9
INTERPRETED GEOPHYSICAL RESULTS
SITE EBS 52
DAVISVILLE, RHODE ISLAND
Prepared for
EA ENGINEERING, SCIENCE, AND TECHNOLOGY
APRIL 1996

EXPLANATION

- GPR Traverse
- GPR Point Target (metal scrap, cobble, utility)
- --- Interpreted Utility
- Possible Concrete Structure and Approx. Depth in Feet
- II Int rpret d Septic Tank

MAGNETICS

NOTES:

- 1) Plan based on sketch from field notes.
- 2) Magnetic contour interval is 50 gammas.
- 3) Interpreted depths are approximate, based on estimated GPR propagation velocities from similar sites (see text).

SCALE: 1 Inch = 10 Feet

FIGURE 10
INTERPRETED GEOPHYSICAL RESULTS
SITE EBS 53
DAVISVILLE, RHODE ISLAND
Prepared for
EA ENGINEERING, SCIENCE, AND TECHNOLOGY
APRIL 1996

EXPLANATION

- ♦ Clean-Out
- **GPR Traverse**
- **GPR Point Target (metal** scrap, cobble, utility)
- Interpreted Utility
- **Possible Concrete Structure** and Approx. Depth in Feet
- Interpret d S ptic Tank
- Possibl Excavation

2) interpreted depths are approximate, based on estimated GPR propagation velocities from similar sites (see text).

SCALE: 1 Inch =10 Feet

FIGURE 11 INTERPRETED GEOPHYSICAL RESULTS SITES EBS 56A AND 56B DAVISVILLE, RHODE ISLAND Prepared for EA ENGINEERING, SCIENCE, AND TECHNOLOGY **APRIL 1996**

NOTES:

- 1) Plan based on sketch from field notes.
- 2) Interpreted depths are approximate, based on estimated GPR propagation velocities from similar sites (see text).

EXPLANATION

- GPR Traverse

GPR Point Target (metal scrap, cobble, utility)

- --- Interpreted Utility
 - Large Utility or Concrete Structure and Approx. Depth in Feet
 - Interpreted Septic Tank

SCALE: 1 Inch = 10 Feet

FIGURE 12
INTERPRETED GEOPHYSICAL RESULTS
SITE EBS 60
DAVISVILLE, RHODE ISLAND
Prepared for
EA ENGINEERING, SCIENCE, AND TECHNOLOGY
APRIL 1996

EXPLANATION

).

- Possible Septic Pipe
- GPR Traverse
- GPR Point Target (metal scrap, cobble, utility)
- ---Interpreted Utility

NOTES:

- 1) Plan based on sketch from field notes.
- 2) Interpreted depths are approximate, based on estimated GPR propagation velocities from similar sites (see text).
- 3) The pipe was not detected by a GPR traverse at 1+60N, immediately beyond the catch basin.

SCALE: 1 Inch = 20 Feet

FIGURE 13
INTERPRETED GEOPHYSICAL RESULTS
SITE EBS 77
DAVISVILLE, RHODE ISLAND
Prepared for
EA ENGINEERING, SCIENCE, AND TECHNOLOGY
APRIL 1996

EXPLANATION

- GPR Traverse
- GPR Point Target (m tal scrap, cobble, utility)
- --- Interpreted Utility
 - Possible Concret Structure and Approx. Depth in Feet
 - Interpreted Septic Tank
 - Possible Excavation

SCALE: 1 Inch = 20 Feet

NOTES:

- 1) Plan based on sketch from field notes.
- 2) EM31 conductivity contour interval is 0.5 millimho per meter (mmho/m).
- 3) EM31 in-phase contour interval is 0.5 part per thousand (ppt.)
- 4) Magnetic contour interval is 50 gammas.
- 5) Interpreted depths are approximate, based on estimated GPR propagation velocities from similar sites (see text).

FIGURE 14
INTERPRETED GEOPHYSICAL RESULTS
SITE EBS 87/60
DAVISVILLE, RHODE ISLAND
Prepared for
EA ENGINEERING, SCIENCE, AND TECHNOLOGY
APRIL 1996

30 feet to grid coordinate +10N, 0+12.5E (not to scale)

NOTES:

- 1) Plan based on sketch from field notes.
- 2) Interpreted depths are approximate, based on estimated GPR propagation velocities from similar sites (see text).

SCALE: 1 Inch = 10 Feet

FIGURE 15 INTERPRETED GEOPHYSICAL RESULTS SITE EBS 36 DAVISVILLE, RHODE ISLAND Prepared for EA ENGINEERING, SCIENCE, AND TECHNOL GY APRIL 1996

HAGER GEOSCIENCE, INC. 63 GREGORY STREET, WALTHAM, MA 02154

EXPLANATION

- --- GPR Traverse
- GPR Point Target (metal scrap, cobble, utility)
- --- Interpreted Utility
 - Possible Septic Tank and Approx. Depth in Feet
 - 11 Interpreted Septic Tank

NOTE:

Interpreted depths are approximate, based on estimated GPR propagation velocities from similar sites (s e text).

FIGURE 16 EXAMPLE GPR RECORD OF SEPTIC TANK SITE 56A DAVISVILLE, RI Prepared for EA EN INEERIN, SCIENCE, AND TECHN LOGY APRIL 1996

CADDFILE: 1284M35b.DWG

EBS Review Item 28 TPH Field Screening Sample Results

SAMPLING	SAMPLE	FIELD RESULT	SAMPLING	
DATE	IDENTIFICATION	(ppm)	# ROUND	COMMENTS
12/09/97	EBS28-SS-1	1,132	Round I	Floor of excavation No. 1
12/09/97	EBS28-SW-E-1	776	Round I	East sidewall of excavation No. 1
12/09/97	EBS28-SW-S-1	716	Round I	South sidewall of excavation No. 1
12/09/97	EBS28-SW-W-1	142	Round I	West sidewall of excavation No. 1
12/09/97	EBS28-SS-2	1,184	Round I	Floor of excavation No. 2
12/09/97	EBS28-SW-N-2	242	Round I	North sidewall of excavation No. 2
12/09/97	EBS28-SW-E-2	2,360	Round I	East sidewall of excavation No. 2
12/15/97	EBS28-SW-E-2	670	Round II	East sidewall of excavation No. 2
12/09/97	EBS28-SW-W-2	812	Round I	West sidewall of excavation No. 2
12/15/97	EBS28-SW-W-2	38	Round II	West sidewall of excavation No. 2
12/10/97	EBS28-PIPE-SS-0	922	Round I	Floor of pipe trench at 0 ft.
12/10/97	EBS28-PIPE-SWE-0	386	Round I	East sidewall of pipe trench at 0 ft.
12/10/97	EBS28-PIPE-SWW-0	670	Round I	West sidewall of pipe trench at 0 ft.
12/10/97	EBS28-PIPE-SS-15	1,154	Round I	Floor of pipe trench at 15 ft.
12/17/97	EBS28-PIPE-SS-15	1,734	Round II	Floor of pipe trench at 15 ft.
12/17/97	EBS28-PIPE-SS-15	250	Round III	Floor of pipe trench at 15 ft.
12/10/97	EBS28-PIPE-SWE-15	256	Round I	East sidewall of pipe trench at 15 ft.
12/10/97	EBS28-PIPE-SWW-15	152	Round I	West sidewall of pipe trench at 15 ft.
12/10/97	EBS28-PIPE-SS-30	530	Round I	Floor of pipe trench at 30 ft.
12/10/97	EBS28-PIPE-SWE-30	590	Round I	East sidewall of pipe trench at 30 ft.
12/10/97	EBS28-PIPE-SWW-30	728	Round I	West sidewall of pipe trench at 30 ft.
12/10/97	EBS28-PIPE-SS-45	618	Round I	Floor of pipe trench at 45 ft.
12/10/97	EBS28-PIPE-SWE-45	546	Round I	East sidewall of pipe trench at 45 ft.
12/10/97	EBS28-PIPE-SWW-45	576	Round I	West sidewall of pipe trench at 45 ft.
12/10/97	EBS28-PIPE-SS-60	550	Round I	Floor of pipe trench at 60 ft.
12/10/97	EBS28-PIPE-SWE-60	248	Round I	East sidewall of pipe trench at 60 ft.
12/10/97	EBS28-PIPE-SWW-60	340	Round I	West sidewall of pipe trench at 60 ft.

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

		EBbag CC 4	
ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial	EBS28-SS-1 12/9/97	EBS28-SW-E-1 12/9/97
TPH (field screening)	-	1,132	776
TPH-IR (Method 418.1)	2,500*	800	170
TPH-GRO (Method 8015M)	2,500*	2.4	ND
VOCs (Method 8260)	2,300	2.4	ND
	1	ND	ND
<u>Dichlorodifluoromethane</u>	-	ND	ND ND
Chloromethane	20	ND	ND ND
Vinyl chloride	3.0	ND	ND ND
Bromomethane	2,900	ND	ND ND
Chloroethane	-	ND	ND ND
Trichlorofluoromethane	0.5	ND	ND ND
1,1-Dichloroethene	9,5	ND ND	ND ND
Carbon disulfide Iodomethane	•	ND	ND ND
	10,000	0.020	0.018
Acetone	10,000 760	ND ND	ND
Methylene chloride trans-1,2-Dichloroethene		ND ND	ND
1,1-Dichloroethane	10,000	ND ND	ND
Vinyl acetate	10,000	ND ND	ND ND
		ND ND	ND
2,2-Dichloropropane cis-1,2-Dichloroethene	10,000	ND	ND ND
Methyl ethyl ketone	10,000	ND	ND
Bromochloromethane	10,000	ND	ND
Chloroform	940	ND	ND ND
1,1,1-Trichloroethane	10,000	ND	ND
Carbon tetrachloride	44	ND	ND
1,1-Dichloropropene		ND	ND
Benzene	200	ND	ND
1,2-Dichloroethane	63	ND	ND
Trichloroethene	520	ND	ND
1,2-Dichloropropane	84	ND	ND
Dibromomethane	-	ND	ND
Bromodichloromethane	92	ND	ND
2-Chloroethyl vinyl ether	- 72	ND	ND
cis-1,3-Dichloropropene	-	ND	ND
4-Methyl-2-pentanone	10,000	ND	ND
Toluene	10,000	ND	ND
trans-1,3-Dichloropropene	-	ND	ND
1,1,2-Trichloroethane	100	ND	ND
Tetrachloroethene	110	ND	ND
1,3-Dichloropropane		ND	ND
,	•	ND	ND
2-Hexanone	-	ND ND	ND
Dibromochloromethane	68		
1,2-Dibromoethane	0.07	ND ND	ND
Chlorobenzene	10,000	ND	ND
1,1,1,2-Tetrachloroethane	220	ND	ND
Ethylbenzene	10,000	ND	ND
Xylenes (total)	10,000	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial	EBS28-SS-1 12/9/97	EBS28-SW-E-1 12/9/97
Styrene	190	ND	ND
Bromoform	720	ND	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	-	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	-	ND	ND
n-Propylbenzene	•	ND	ND
2-Chlorotoluene	-	ND	ND
4-Chlorotoluene	•	ND	· ND
1,3,5-Trimethylbenzene	-	ND	ND
tert-Butylbenzene		ND	ND
1,2,4-Trimethylbenzene	-	ND	ND
sec-Butylbenzene	-	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
4-Isopropyltoluene		ND ND	ND ND
1,4-Dichlorobenzene	240	ND	ND
1,2-Dichlorobenzene n-Butylbenzene	10,000	ND	ND
1,2-Dibromo-3-chloropropane	4.1	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Hexachlorobutadiene	10,000	ND	ND
1,2,3-Trichlorobenzene	-	ND	ND
Methyl-t-Butyl Ether	10,000	ND	ND
Napthalene	10,000	ND	ND
OCs (Method 8270)			
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1.2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol	-	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol	•	ND	ND
n-Nitroso-di-n-propylamine	-	ND	ND ND
Hexachloroethane	410	ND	
			ND
Nitrobenzene	-	ND	ND
Isophorone	-	ND	ND
2-Nitrophenol	•	ND	ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	-	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	0.044 J	ND
4-Chloroaniline	8,200	ND ND	ND ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria	EB\$28-\$\$-1	EBS28SW-E-
ANALITICALIFACAMETER (ppm)	Industrial/Commercial	12/9/97	12/9/97
Hexachlorobutadiene	73	ND	ND
4-Chloro-3-methylphenol	-	ND	ND
2-Methylnapthalene	10,000	ND	ND
Hexachlorcyclopentadiene	-	ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene		ND	ND
2-Nitroaniline	_	ND	ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	ND	ND
2,6-Dinitrotoluene	1 - 1	ND	ND
3-Nitroaniline	1	ND	ND
Acenapthene	10,000	0.870	0.083 J
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol		ND	ND
Dibenzofuran	-	0.140 J	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000	0.560	0.068 J
4-Chlorophenyl-phenylether		ND	ND
4-Nitroaniline	_	ND	ND
4,6-Dinitro-2-methylphenol	_	ND	: ND
n-Nitrosodiphenylamine	-	ND	ND
4-Bromophenyl-phenylether	—	ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	1.60	0.240 J
Anthracene	10,000	1.10	0.120 J
Di-n-butylphthalate		ND	ND
Carbazole	-	0.140 J	ND
Fluoranthene	10,000	3.20	0.410
Pyrene	10,000	2.50	0.270 J
Butylbenzylphthalate	-	ND	ND
Benzo(a)anthracene	7.8	0.720	0.130 J
Chrysene	780	0.760	0.200 J
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	0.049 J	ND
	710	ND ND	ND ND
Di-n-octylphthalate	70		
Benzo(b)fluoranthene	7.8	0.600	0.160 J
Benzo(k)fluoranthene	78	0.310 J	0.054 J
Benzo(a)pyrene	0.8	0.440	0.094 J
Indeno(1,2,3-cd)pyrene	7.8	0.110 J	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28 Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-5W-E-1 12/9/97
Dibenzo(a,h)anthracene	0.8	ND	ND
Benzo(g,h,i)perylene	10,000	0.110 J	ND

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-SW-W-I 12/9/97
TPH (field screening)	2 25	716	142
	2,500*	170	ND
TPH-IR (Method 418.1)		170	ND
TPH-GRO (Method 8015M)	2,500*	-	<u> </u>
VOCs (Method 8260)		ND	l ND
Dichlorodifluoromethane	·	ND ND	ND
Chloromethane		ND	ND
Vinyl chloride	3.0	ND	ND
Bromomethane	2,900	ND	ND
Chloroethane	<u> </u>	ND	ND
Trichlorofluoromethane	0,5	ND ND	ND
1,1-Dichloroethene	9.5		ND
Carbon disulfide	-	ND	ND
Iodomethane		ND	ND 0.007
Acetone	10,000	ND	0.007
Methylene chloride	760	ND	ND
trans-1,2-Dichloroethene	10,000	ND ND	ND
1,1-Dichloroethane	10,000	ND ND	ND
Vinyl acetate		ND ND	ND
2,2-Dichloropropane	10.000	ND ND	ND
cis-1,2-Dichloroethene	10,000		ND
Methyl ethyl ketone	10,000	ND ND	ND
Bromochloromethane		ND ND	ND
Chloroform	940	ND ND	ND
1,1,1-Trichloroethane	10,000	ND ND	ND
Carbon tetrachloride	44	ND ND	ND
1,1-Dichloropropene		ND ND	ND
Benzene	200	ND ND	ND
1,2-Dichloroethane	63	ND ND	ND
Trichloroethene	520		ND
1,2-Dichloropropane	84	ND ND	ND
Dibromomethane	<u> </u>	ND NO	ND NE
Bromodichloromethane	92	ND ND	ND
2-Chloroethyl vinyl ether	-	ND ND	ND
cis-1,3-Dichloropropene	10,000	ND ND	ND ND
4-Methyl-2-pentanone	10,000	ND NE	ND
Toluene	10,000	ND	ND
trans-1,3-Dichloropropene		ND	ND
1,1,2-Trichloroethane	100	ND ND	ND
Tetrachloroethene	110	ND	ND
1,3-Dichloropropane	<u> </u>	ND	ND
2-Hexanone	-	ND	ND
Dibromochloromethane	68	ND	ND
1,2-Dibromoethane	0.07	ND	ND
Chlorobenzene	10,000	ND	ND
1,1,1,2-Tetrachloroethane	220	ND	ND
Ethylbenzene	10,000	ND	ND
Xylenes (total)	10,000	ND	ND
22 y tottos (total)			

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYFICAL PARAMETER	Direct Exposure Criteria		SERVE SAME
(ppm)	Industrial/Commercial	12/9/97	12/9/97
Styrene	190	ND	ND
Bromoform	720	ND ·	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	•	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	-	ND	ND
n-Propylbenzene	-	ND	ND
2-Chlorotoluene	<u>-</u>	ND	ND
4-Chlorotoluene		ND	ND
1,3,5-Trimethylbenzene		ND	ND
tert-Butylbenzene		ND	ND
1,2,4-Trimethylbenzene	-	ND	ND
sec-Butylbenzene		ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
4-Isopropyltoluene	-	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1,2-Dichlorobenzene	10,000	ND ND	ND
n-Butylbenzene	 	ND ND	ND
1,2-Dibromo-3-chloropropane	4.1	ND ND	ND
1,2,4-Trichlorobenzene	10,000	ND ND	ND ND
Hexachlorobutadiene 1,2,3-Trichlorobenzene		ND ND	ND ND
Methyl-t-Butyl Ether	10,000	ND	ND ND
Napthalene	10,000	ND	ND
SVOCs (Method 8270)	1 10,000		ND
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	0.043 J	ND
1,2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol	-	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol		ND	ND
n-Nitroso-di-n-propylamine	-	ND	ND
Hexachloroethane	410	ND ND	
Nitrobenzene	 -		ND
	-	ND	ND
Isophorone	•	ND	ND
2-Nitrophenol	-	ND	ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	-	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	ND	ND
4-Chloroaniline	8,200	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria		EBS28-SW-W-I
(ppm) Hexachlorobutadiene	Industrial/Commercial 73	12/9/97 ND	12/9/97 ND
	13	ND	ND
4-Chloro-3-methylphenol	10,000	ND	ND
2-Methylnapthalene	10,000		
Hexachlorcyclopentadiene	500	ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene	-	ND	ND
2-Nitroaniline	-	ND	ND
Dimethylphthalate	10,000	ND_	ND
Acenaphthylene	10,000	ND	ND
2,6-Dinitrotoluene	•	ND	ND
3-Nitroaniline	<u>-</u>	ND	ND
Acenapthene	10,000	ND	ND
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	•	ND	ND
Dibenzofuran	•	ND	ND
2,4-Dinitrotohuene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000	ND.	ND
4-Chlorophenyl-phenylether	•	ND ·	ND
4-Nitroaniline	-	ND	ND
4,6-Dinitro-2-methylphenol	-	ND	ND
n-Nitrosodiphenylamine	- ,	ND	ND
4-Bromophenyl-phenylether	<u> </u>	ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	ND	ND
Anthracene	10,000	ND	ND
Di-n-butylphthalate	-	ND	ND
Carbazole		ND	ND
Fluoranthene	10,000	0.056 J	ND
Pyrene	10,000	0.050 J	ND
Butylbenzylphthalate	•	ND	ND
Benzo(a)anthracene	7.8	0.064 J	ND
Chrysene	780	0.110 J	ND
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	ND	ND
Di-n-octylphthalate	- 1	ND	ND
Benzo(b)fluoranthene	7.8	0.099 J	ND
Benzo(k)fluoranthene		ND	ND
Benzo(a)pyrene	0.8	0.059 J	ND
	7.8	ND ND	
Indeno(1,2,3-cd)pyrene	7.0	ואט	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28 Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-SW-W-1 12/9/97
Dibenzo(a,h)anthracene	0.8	ND	ND
Benzo(g,h,i)perylene	10,000	ND	ND

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria Industrial/Commercial	EBS28-SS-2 12/9/97	EBS28-SW-N-2
(ppm) TPH (field screening)	* ************************************	1,184	12/9/97
	2,500*	720	242
TPH-IR (Method 418.1)			90
TPH-GRO (Method 8015M)	2,500*	0.9	ND
VOCs (Method 8260)		ND	
Dichlorodifluoromethane	 	ND	ND
Chloromethane		ND	ND
Vinyl chloride	3.0	ND	ND
Bromomethane	2,900	ND ND	ND
Chloroethane		ND	ND
Trichlorofluoromethane	1	ND ND	ND
1,1-Dichloroethene	9,5	ND ND	ND
Carbon disulfide Iodomethane	 		ND
	10,000	ND 0.012	ND
Acetone	10,000	0.012 ND	ND
Methylene chloride	760	ND ND	ND ND
trans-1,2-Dichloroethene	10,000	ND ND	
1,1-Dichloroethane Vinyl acetate	10,000	ND ND	ND ND
		ND	ND ND
2,2-Dichloropropane	10,000	ND	ND
cis-1,2-Dichloroethene Methyl ethyl ketone	10,000	ND ,	ND
Bromochloromethane	10,000	ND	ND
Chloroform	940	ND	ND
1,1,1-Trichloroethane	10,000	ND	ND
Carbon tetrachloride	44	ND	ND
1,1-Dichloropropene		ND	ND
Benzene	200	ND	ND
1,2-Dichloroethane	63	ND	ND
Trichloroethene	520	ND	ND
1,2-Dichloropropane	84	ND	ND
Dibromomethane		ND	ND
Bromodichloromethane	92	ND	ND
2-Chloroethyl vinyl ether	-	ND	ND
cis-1,3-Dichloropropene	-	ND	ND
4-Methyl-2-pentanone	10,000	ND	ND
Toluene	10,000	ND	ND
trans-1,3-Dichloropropene	-	ND	ND
1,1,2-Trichloroethane	100	ND	ND
Tetrachloroethene	110	ND	ND
1,3-Dichloropropane	-	ND	ND
2-Hexanone	•	ND	ND
Dibromochloromethane	68	ND	ND
1,2-Dibromoethane	0.07	ND	ND
Chlorobenzene	10,000	0.042	ND
1,1,1,2-Tetrachloroethane	220	ND	ND
Ethylbenzene	10,000	ND	ND
Durytochicolic	10,000	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria	EB\$28-\$\$-2	EBS28-SW-N-2
(ppm)	Industrial/Commercial	12/9/97	12/9/97
Styrene	190	ND	ND
Bromoform	720	ND	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	-	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	•	. ND	ND
n-Propylbenzene	•	ND	ND
2-Chlorotoluene	-	ND ·	ND
4-Chlorotoluene		ND	ND
1,3,5-Trimethylbenzene	•	0.009	ND
tert-Butylbenzene	•	ND	ND
1,2,4-Trimethylbenzene	•	0.030	ND
sec-Butylbenzene	<u> </u>	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
4-Isopropyltoluene		ND 0.012	ND
1,4-Dichlorobenzene	240	0.012	ND
1,2-Dichlorobenzene	10,000	ND ND	ND
n-Butylbenzene		ND	ND ND
1,2-Dibromo-3-chloropropane	4.1	ND	ND
1,2,4-Trichlorobenzene Hexachlorobutadiene	10,000	ND	ND
1,2,3-Trichlorobenzene		ND	ND
Methyl-t-Butyl Ether	10,000	ND	ND
Napthalene	10,000	ND	ND
SVOCs (Method 8270)			
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1.2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol	-	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol		ND	ND ND
	-		
n-Nitroso-di-n-propylamine	410	ND	ND_
Hexachloroethane	410	ND	ND
Nitrobenzene	•	ND	ND
Isophorone	•	ND	ND
2-Nitrophenol	-	ND	ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	•	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	ND	ND
4-Chloroaniline	8,200	ND	
4-Chioroaniilne	0,200	ואט	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria	EBS28-SS-2	EBS28-SW-N-2
(ppin)	Industrial/Commercial	12/9/97	12/9/97
Hexachlorobutadiene	73	ND	ND
4-Chloro-3-methylphenol	•	ND	ND
2-Methylnapthalene	10,000	ND	ND
Hexachlorcyclopentadiene	-	ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene	-	ND	ND
2-Nitroaniline	-	ND	ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	ND	ND
2,6-Dinitrotoluene	-	ND	ND
3-Nitroaniline	-	ND	ND
Acenapthene	10,000	0.230 J	ND
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	•	ND	ND
Dibenzofuran	-	ND	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000	0.100 J	ND
4-Chlorophenyl-phenylether	<u>.</u>	ND	ND
4-Nitroaniline	:	ND	ND
4,6-Dinitro-2-methylphenol	-	ND	ND
n-Nitrosodiphenylamine	-	ND	ND
4-Bromophenyl-phenylether	-	ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	0.330 J	0.063 J
Anthracene	10,000	0.310 J	ND
Di-n-butylphthalate	•	ND	ND
Carbazole	· •	ND	ND
Fluoranthene	10,000	1.40	0.097 J
Pyrene	10,000	0.690	0.091 J
Butylbenzylphthalate	•	ND	ND
Benzo(a)anthracene	7.8	0.320 J	0.065 J
Chrysene	780	0.400 J	0.077
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	ND	ND
Di-n-octylphthalate	-	ND	ND
Benzo(b)fluoranthene	7.8	0.330 J	0.085 J
Benzo(k)fluoranthene	78	0.130 J	ND
Benzo(a)pyrene	0.8	0.220 J	0.060 J
Indeno(1,2,3-cd)pyrene	7.8	0.048 J	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28 Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-SW-N-2 12/9/97
Dibenzo(a,h)anthracene	0.8	ND	ND
Benzo(g,h,i)perylene	10,000	0.045 J	ND

)

}

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER Direct Exposure Cotteria EBS28-SW-F-1 EBS28-SW-E-				
ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial	£8528-5W-E-2 12/9/97	EBS28-SW4E-2 12/15/97	
TPH (field screening)	-	2,360	670	
TPH-IR (Method 418.1)	2,500*	1,600	98	
TPH-GRO (Method 8015M)	2,500*	-	ND	
VOCs (Method 8260)				
Dichlorodifluoromethane	-	ND	ND	
Chloromethane	-	ND	ND	
Vinyl chloride	3.0	ND	ND	
Bromomethane	2,900	ND	ND	
Chloroethane	-	ND	ND	
Trichlorofluoromethane	-	ND	ND	
1,1-Dichloroethene	9.5	ND	ND	
Carbon disulfide	-	ND	ND	
Iodomethane	-	ND	ND	
Acetone	10,000	0.030	0.022	
Methylene chloride	760	ND	ND	
trans-1,2-Dichloroethene	10,000	ND	ND	
1,1-Dichloroethane	10,000	ND	ND	
Vinyl acetate	-	ND	ND	
2,2-Dichloropropane	-	ND	ND	
cis-1,2-Dichloroethene	10,000	ND	ND	
Methyl ethyl ketone	10,000	0.011	ND	
Bromochloromethane	- 1	ND	ND	
Chloroform	940	ND	ND	
1,1,1-Trichloroethane	10,000	ND	ND	
Carbon tetrachloride	44	ND	ND	
1,1-Dichloropropene	-	ND	ND	
Benzene	200	ND	ND	
1,2-Dichloroethane	63	ND	ND	
Trichloroethene	520	ND	ND	
1,2-Dichloropropane	84	ND	ND	
Dibromomethane	-	ND	ND	
Bromodichloromethane	92	ND	ND	
2-Chloroethyl vinyl ether	•	ND	ND	
cis-1,3-Dichloropropene	-	ND	ND	
4-Methyl-2-pentanone	10,000	ND	ND	
Toluene	10,000	ND	ND	
trans-1,3-Dichloropropene	-	ND	ND	
1,1,2-Trichloroethane	100	ND	ND	
Tetrachloroethene	110	ND	ND	
1,3-Dichloropropane		ND	ND	
2-Hexanone		ND	ND	
Dibromochloromethane	68	ND	ND	
1,2-Dibromoethane	0.07	ND	ND	
Chlorobenzene	10,000	ND	ND	
1,1,1,2-Tetrachloroethane	220	ND	ND	
	10,000	ND	ND	
Ethylbenzene	 	ND 6		
Xylenes (total)	10,000	IAD [§]	ND	

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria		EBS28-SW-E-2
(ppm)	Industrial/Commercial 190	12/9/97 ND	12/15/97 ND
Styrene	720	ND	ND
Bromoform	10,000	ND	ND
Isopropylbenzene Bromobenzene	10,000	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	-	ND	ND
n-Propylbenzene	-	ND	ND
2-Chlorotoluene		ND	ND
4-Chlorotoluene	_	ND	ND
1,3,5-Trimethylbenzene	_	ND	ND
tert-Butylbenzene	-	ND	ND
1,2,4-Trimethylbenzene	-	ND	ND
sec-Butylbenzene	-	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
4-Isopropyltoluene	-	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1,2-Dichlorobenzene	10,000	ND	ND
n-Butylbenzene	-	ND	ND
1,2-Dibromo-3-chloropropane	4.1	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Hexachlorobutadiene	-	ND	ND
1,2,3-Trichlorobenzene	•	ND	ND
Methyl-t-Butyl Ether	10,000	ND	ND
Napthalene	10,000	0.010	ND
SVOCs (Method 8270)			
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND	ND
2-Chlorophenol	10,000	NDND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1,2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol	-	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol	-	ND	ND
n-Nitroso-di-n-propylamine	-	ND	ND
Hexachloroethane	410	ND	ND
Nitrobenzene	-	ND	ND
Isophorone	-	ND	ND
		ND	
2-Nitrophenol	-		ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	-	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND ND	ND
Napthalene	10,000	0.067 J	ND
4-Chloroaniline	8,200	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

-	Direct Exposure Criteria		EBSZASSW-E-
ANALYTICAL PARAMETER (ppm)	Industrial/Commercial	12/9/97	12/15/97
Hexachlorobutadiene	73	ND	ND
4-Chloro-3-methylphenol	•	ND	ND
2-Methylnapthalene	10,000	0.085 J	ND
Hexachlorcyclopentadiene	-	ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene	-	ND	ND
2-Nitroaniline	-	ND	. ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	ND	ND
2,6-Dinitrotoluene	-	ND	ND
3-Nitroaniline	-	ND	ND
Acenapthene	10,000	1.70	ND
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	•	ND	ND
Dibenzofuran	-	0.140 J	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000	0.640	ND
4-Chlorophenyl-phenylether		ND	ND
4-Nitroaniline	-	ND	ND
4,6-Dinitro-2-methylphenol	-	ND	ND
n-Nitrosodiphenylamine	- *: ,	ND	ND
4-Bromophenyl-phenylether	-	ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	1.80	0.046 J
Anthracene	10,000	1.50	ND
Di-n-butylphthalate	-	ND	ND
Carbazole	-	0.043 J	ND
Fluoranthene	10,000	5.40	0.078 J
Pyrene	10,000	4.70	0.072 J
Butylbenzylphthalate	-	ND	ND
Benzo(a)anthracene	7.8	1.30	ND
Chrysene	780	1.70	0.061 J
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	0.180 J	ND
Di-n-octylphthalate	-	ND	ND
Benzo(b)fluoranthene	7.8	1.70	0.068 J
Benzo(k)fluoranthene	78	0.710	0.073 J
Benzo(a)pyrene	0.8	0.990	0.044 J
Indeno(1,2,3-cd)pyrene	7.8	0.150 J	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28 Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-SW-E-2 12/15/97
Dibenzo(a,h)anthracene	0.8	0.060 J	ND
Benzo(g,h,i)perylene	10,000	0.120 J	ND

Þ

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria	ERSESWAVE	EBS28-SW-W-2
(ppm)	Industrial/Commercial		12/15/97
TPH (field screening)	•	812	38
TPH-IR (Method 418.1)	2,500*	740	ND
TPH-GRO (Method 8015M)	2,500*	_	ND
VOCs (Method 8260)			
Dichlorodifluoromethane	1 .	ND	ND
Chloromethane	-	ND ·	ND
Vinyl chloride	3.0	ND	ND
Bromomethane	2,900	ND	ND
Chloroethane	-	ND	ND
Trichlorofluoromethane	-	ND	ND
1,1-Dichloroethene	9,5	ND	ND
Carbon disulfide	-	ND	ND
Iodomethane	-	ND	ND
Acetone	10,000	0.009	ND
Methylene chloride	760	ND	ND
trans-1,2-Dichloroethene	10,000	ND	ND
1,1-Dichloroethane	10,000	ND	ND
Vinyl acetate	-	ND	ND
2,2-Dichloropropane	-	ND	ND
cis-1,2-Dichloroethene	10,000	ND	ND
Methyl ethyl ketone	10,000	ND	ND
Bromochloromethane		ND	ND
Chloroform	940	ND	ND
1,1,1-Trichloroethane	10,000	ND	ND
Carbon tetrachloride	44	ND	ND
1,1-Dichloropropene		ND	ND
Benzene	200	ND	ND
1,2-Dichloroethane	63	ND	ND
Trichloroethene	520	ND	ND
1,2-Dichloropropane	84	ND ND	ND
Dibromomethane	-	ND ND	ND ND
Bromodichloromethane	92	ND ND	ND ND
2-Chloroethyl vinyl ether	-	ND	ND ND
cis-1,3-Dichloropropene 4-Methyl-2-pentanone	10,000	ND	ND ND
		ND ND	ND
Toluene	10,000	ND	ND
trans-1,3-Dichloropropene	100	ND	ND
1,1,2-Trichloroethane	110	ND	ND
Tetrachloroethene		ND ND	ND
1,3-Dichloropropane	•	ND	ND
2-Hexanone		ND	ND
<u>Dibromochloromethane</u>	68	ND	ND
1,2-Dibromoethane	0.07	ND ND	ND ND
Chlorobenzene	10,000	ND ND	ND ND
1,1,1,2-Tetrachloroethane	220		
Ethylbenzene	10,000	ND	ND
Xylenes (total)	10,000	ND ,	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Crneria	SEBSZACSWAWZ	EBS28.SW-W-2
(ppm)	Industrial/Commercial	12/9/97	12/15/97
Styrene	190	ND	ND
Bromoform	720	ND	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	•	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	-	ND	ND
n-Propylbenzene		ND	ND
2-Chlorotoluene	-	ND	ND
4-Chlorotoluene	-	ND	ND
1,3,5-Trimethylbenzene	-	ND	ND
tert-Butylbenzene	•	ND	ND
1,2,4-Trimethylbenzene		ND	ND
sec-Butylbenzene	-	ND	ND
1,3-Dichlorobenzene	10,000	ND ND	ND
4-Isopropyltoluene		ND ND	ND
1,4-Dichlorobenzene	240	ND ND	ND
1,2-Dichlorobenzene	10,000	ND	ND ND
n-Butylbenzene	4.1	ND	ND ND
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	10,000	ND	ND ND
Hexachlorobutadiene	10,000	ND	ND
1,2,3-Trichlorobenzene		ND	ND
Methyl-t-Butyl Ether	10,000	ND	ND
Napthalene	10,000	ND	ND
SVOCs (Method 8270)			
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1.2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol		ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol		ND	ND
n-Nitroso-di-n-propylamine	-	ND	ND
Hexachloroethane	410	ND	ND ND
Nitrobenzene	-	ND	ND
Isophorone	-	ND	ND ND
2-Nitrophenol	-	ND	ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	•	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	6.10	ND
4-Chloroaniline	8,200	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

Þ

EBS Review Item 28
Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Вичест Ехровите Септегиа		EBS28 SW W
(ppm)	Industrial/Commercial	12/9/97	12/15/97
Hexachlorobutadiene	73	ND	ND
4-Chloro-3-methylphenol	•	ND	ND
2-Methylnapthalene	10,000	3.90	ND
Hexachlorcyclopentadiene	-	ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene	-	ND	ND
2-Nitroaniline	-	ND	ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	ND	ND
2,6-Dinitrotoluene	-	ND	ND
3-Nitroaniline	-	ND	ND
Acenapthene	10,000	38.0	ND
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	-	ND	ND
Dibenzofuran	•	21.0	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000	ND	ND
4-Chlorophenyl-phenylether	-	ND	ND
4-Nitroaniline	-	ND	ND
4,6-Dinitro-2-methylphenol	<u>-</u>	ND	ND
n-Nitrosodiphenylamine	-	ND	ND
4-Bromophenyl-phenylether	-	ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	200	ND
Anthracene	10,000	75.0	ND
Di-n-butylphthalate	•	ND	ND
Carbazole	-	29.0	ND
Fluoranthene	10,000	180	ND
Pyrene	10,000	140	ND
Butylbenzylphthalate	-	ND	ND
Benzo(a)anthracene	7.8	82.0	ND
Chrysene	780	83.0	ND
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	ND	ND
Di-n-octylphthalate	•	ND	ND
Benzo(b)fluoranthene	7.8	81.0	ND
Benzo(k)fluoranthene	78	30.0	ND
Benzo(a)pyrene	0.8	62.0	ND
Indeno(1,2,3-cd)pyrene	7.8	12.0	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28 Septic Tank/TPH Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-SW-W-2 12/15/97
Dibenzo(a,h)anthracene	0.8	5.60	ND
Benzo(g,h,i)perylene	10,000	11.0	ND

EBS Review Item 28
Septic Tank/TPH Excavation Pesticide Sample Results

,¥,

ANALYTICAL PARAMETER	Direct Exposure Criteria	EBS28-SW-N	EBS28-SW-E	EBS28-SW-W
(ppm)	Industrial/Commercial	12/11/97	12/11/97	12/11/97
PEST/PCBs (Method 8080)				
alpha-BHC	•	ND	ND	ND
gamma-BHC	•	_ ND	ND	ND
Heptachlor	•	ND	ND	ND
Aldrin	•	ND	ND	ND
beta-BHC	-	ND	ND	ND
delta-BHC	•	ND	ND	ND
Heptachlor epoxide	-	ND	ND	ND
Endosulfan I	-	ND	ND	ND
4,4'-DDE	•	ND	ND ·	ND
Dieldrin	0.4	ND	ND	ND
Endrin	•	ND	ND	ND
4,4'-DDD	•	ND	ND	ND
Endosulfan II	-	ND	ND	ND
4,4'-DDT	•	ND	ND	ND
Endrin ketone		ND	ND	ND
Endrin aldehyde	•	ND	ND	ND
Methoxychlor	•	ND	ND	ND
Endosulfan sulfate	•	ND	ND	ND
alpha-Chlordane	4.4	ND	ND	ND
gamma-Chlordane	4.4	ND	ND	ND
Toxaphene	•	ND	ND	ND
PCBs (total)	10	ND	ND	ND

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria		EBS28-PIPE-SWE-0
(ppm)	Industrial/Commercial	12/10/97	12/16/97
TPH (field screening)	-	922	386
TPH-IR (Method 418.1)	2,500*	1,300	86
TPH-GRO (Method 8015M)	2,500*	ND	-
VOCs (Method 8260)			
Dichlorodifluoromethane	-	ND	ND
Chloromethane	-	ND	ND
Vinyl chloride	3.0	ND	ND
Bromomethane	2,900	ND	ND.
Chloroethane	-	ND	ND
Trichlorofluoromethane	-	ND	ND
1,1-Dichloroethene	9.5	ND	ND
Carbon disulfide	-	ND	ND
Iodomethane	•	ND	ND
Acetone	10,000	ND	ND
Methylene chloride	760	ND	ND
trans-1,2-Dichloroethene	10,000	ND	ND
1,1-Dichloroethane	10,000	ND	ND
Vinyl acetate	-	ND	ND
2,2-Dichloropropane	-	ND	ND
cis-1,2-Dichloroethene	10,000	ND	ND
Methyl ethyl ketone	10,000	ND	ND
Bromochloromethane	-	ND	ND
Chloroform	940	ND	ND
1,1,1-Trichloroethane	10,000	ND	ND
Carbon tetrachloride	44	ND	ND
1,1-Dichloropropene	-	ND	ND
Benzene	200	ND	ND
1,2-Dichloroethane	63	ND	ND
Trichloroethene	520	ND	ND
1,2-Dichloropropane	84	ND	ND
Dibromomethane		ND	ND
Bromodichloromethane	92	ND	ND
2-Chloroethyl vinyl ether	-	ND	ND
cis-1,3-Dichloropropene	-	ND	ND
4-Methyl-2-pentanone	10,000	ND	ND
Toluene	10,000	ND	ND
trans-1,3-Dichloropropene		ND	ND
1,1,2-Trichloroethane	100	ND	ND
Tetrachloroethene	110	ND	ND :
1,3-Dichloropropane	-	ND	ND
2-Hexanone	-	ND	ND
Dibromochloromethane	68	ND	ND
1,2-Dibromoethane	0.07	ND	ND
Chlorobenzene	10,000	ND	ND
1,1,1,2-Tetrachloroethane	220	ND	ND
Ethylbenzene	10,000	ND	ND
	10,000	ND	ND
Xylenes (total)	1 10,000	110	עיו

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial	EB\$28-PIPE-\$\$-0 12/10/97	EB\$28-PIPE-SV 12/10/97
Styrene	190	ND	ND
Bromoform	720	ND	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	•	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	•	ND	ND
n-Propylbenzene	•	ND	ND
2-Chlorotoluene	-	ND	ND
4-Chlorotoluene	-	ND	ND
1,3,5-Trimethylbenzene	<u>-</u>	ND	ND
tert-Butylbenzene	•	ND	ND
1,2,4-Trimethylbenzene	-	ND ND	ND
sec-Butylbenzene	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND ND	ND
4-Isopropyltoluene	240	ND ND	ND ND
1,4-Dichlorobenzene	240	ND ND	ND ND
1,2-Dichlorobenzene	10,000	ND ND	ND ND
n-Butylbenzene 1,2-Dibromo-3-chloropropane	4.1	ND ND	ND
1,2,4-Trichlorobenzene	10,000	ND .	ND
Hexachlorobutadiene	-	ND	ND
1,2,3-Trichlorobenzene	_	ND	ND
Methyl-t-Butyl Ether	10,000	ND	ND
Napthalene	10,000	ND	ND
Cs (Method 8270)			
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	0.062 Ј	ND
1,2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol	-	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol		ND	ND
n-Nitroso-di-n-propylamine	_	ND	ND
Hexachloroethane	410	ND	ND
		ND ND	
Nitrobenzene	-		ND ND
Isophorone	•	ND ND	ND
2-Nitrophenol	-	ND	ND
2,4-Dimethylphenol	10,000	ND ND	ND
bis(2-Chloroethoxy)methane	-	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	ND	ND
4-Chloroaniline	8,200	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

}

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria		EBS28-PIPE-SW
(рриг) Hexachlorobutadiene	Industrial/Commercial 73	12/19/97 ND	12/10/97
		ND	ND
4-Chloro-3-methylphenol	10,000		ND
2-Methylnapthalene	10,000	ND	ND
Hexachlorcyclopentadiene	-	ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND ND	ND ND
2-Chloronapthalene	-	ND	ND
2-Nitroaniline	<u>-</u>	ND	ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	0.110 J	0.110 J
2,6-Dinitrotoluene	•	ND	ND
3-Nitroaniline		ND	ND
Acenapthene	10,000	ND	ND
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	•	ND	ND
Dibenzofuran	•	ND	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000	ND:	ND
4-Chlorophenyl-phenylether	-	. ND	ND
4-Nitroaniline	-	ND	ND
4,6-Dinitro-2-methylphenol	-	ND	ND
n-Nitrosodiphenylamine	-	ND	ND
4-Bromophenyl-phenylether	-	ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	0.130 J	ND
Anthracene	10,000	0.210 J	0.150 J
Di-n-butylphthalate	•	ND	ND
Carbazole	-	ND	ND
Fluoranthene	10,000	0.500	0.100 J
Pyrene	10,000	0.680	0.100 J
Butylbenzylphthalate		ND	ND
Benzo(a)anthracene	7.8	0.370 J	0.180 J
Chrysene	780	0.720	0.430
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	0.048 J	ND
Di-n-octylphthalate	-	ND ND	ND ND
Benzo(b)fluoranthene	7.8	1.20	
			0.990
Benzo(k)fluoranthene	78	0.430	0.280 J
Benzo(a)pyrene	0.8	0.730	0.650
Indeno(1,2,3-cd)pyrene	7.8	0.320 J	0.340 J

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28 Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EB528-PIPE-SWE-0 12/10/97
Dibenzo(a,h)anthracene	0.8	0.110 J	0.110 J
Benzo(g,h,i)perylene	10,000	0.310 J	0.350 J

)

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER Direct Exposure Criteria EBS28-PIPE-SWW-0 EBS28-PIPE-S					
ANALY IN ALPAKAMETER (ppm)	Industrial/Commercial	12/19/97	EBS28-PIPE-SS-45 12/10/97		
TPH (field screening)		670	1,154		
TPH-IR (Method 418.1)	2,500*	500			
			1,700		
TPH-GRO (Method 8015M)	2,500*	•	ND		
VOCs (Method 8260)	<u> </u>	ND	1 210		
Dichlorodifluoromethane	-	ND ND	ND		
Chloromethane			ND		
Vinyl chloride	3.0	ND ND	ND		
Bromomethane	2,900	ND ND	ND		
Chloroethane		ND ND	ND		
Trichlorofluoromethane	0.5	ND ND	ND		
1,1-Dichloroethene	9,5	ND ND	ND		
Carbon disulfide Iodomethane	<u>-</u>	ND ND	ND ND		
	10,000	ND ND	ND 0.006		
Acetone	10,000 760	ND ND	0.006 ND		
Methylene chloride		ND ND	ND		
trans-1,2-Dichloroethene 1,1-Dichloroethane	10,000	ND ND	ND		
Vinyl acetate	10,000	ND ND	ND ND		
2,2-Dichloropropane		ND ND	ND		
cis-1,2-Dichloroethene	10,000	ND	ND		
Methyl ethyl ketone	10,000	ND	ND		
Bromochloromethane	-	ND	ND		
Chloroform	940	ND	ND		
1,1,1-Trichloroethane	10,000	ND	ND		
Carbon tetrachloride	44	ND.	ND		
1,1-Dichloropropene		ND	ND		
Benzene	200	ND	ND		
1,2-Dichloroethane	63	ND	ND		
Trichloroethene	520	ND	ND		
1,2-Dichloropropane	84	ND	ND		
Dibromomethane		ND	ND		
Bromodichloromethane	92	ND	ND		
2-Chloroethyl vinyl ether	-	ND	ND		
cis-1,3-Dichloropropene	-	ND	ND		
4-Methyl-2-pentanone	10,000	ND	ND		
Toluene	10,000	ND	ND		
trans-1,3-Dichloropropene	•	ND	ND		
1,1,2-Trichloroethane	100	ND	ND		
Tetrachloroethene	110	ND	ND		
1,3-Dichloropropane	•	ND	ND		
2-Hexanone	-	ND	ND		
Dibromochloromethane	68	ND	ND		
1,2-Dibromoethane	0.07	ND	ND		
Chlorobenzene	10,000	ND	ND		
1,1,1,2-Tetrachloroethane	220	ND	ND		
Ethylbenzene	10,000	ND	ND		
	10,000	ND	ND		
Xylenes (total)	10,000	IND	ND		

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Coumercial		EBS28-PIPE-SS-1 12/10/97
Styrene	190	ND	ND
Bromoform	720	ND	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	•	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	_	ND	ND
n-Propylbenzene	•	ND	ND
2-Chlorotoluene	-	ND	ND
4-Chlorotoluene	•	ND	ND
1,3,5-Trimethylbenzene		ND	ND
tert-Butylbenzene	-	ND	ND
1,2,4-Trimethylbenzene	-	ND	ND
sec-Butylbenzene	10.000	ND ND	ND
1,3-Dichlorobenzene	10,000	ND ND	ND ND
4-Isopropyltoluene 1,4-Dichlorobenzene	240	ND	ND ND
1,2-Dichlorobenzene	10,000	ND	ND ND
n-Butylbenzene	10,000	ND	ND
1,2-Dibromo-3-chloropropane	4.1	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Hexachlorobutadiene	• ***	ND	ND
1,2,3-Trichlorobenzene	•	ND	ND
Methyl-t-Butyl Ether	10,000	ND	ND
Napthalene	10,000	ND	0.009
OCs (Method 8270)			
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	ND	0.130 J
1,2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol	-	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol	•	ND	ND
n-Nitroso-di-n-propylamine	-	ND	ND
Hexachloroethane	410	ND	ND
Nitrobenzene	-	ND	ND
Isophorone			
 		ND	ND
2-Nitrophenol	-	ND ND	ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	•	ND_	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	ND	0.052 J
4-Chloroaniline	8,200	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria	EBS28-PIPE-SWW40	EBSZEPIPESSEE
(ppm)	Industrial/Commercial	12/10/97	12/18/97
Hexachlorobutadiene	73	ND	ND
4-Chloro-3-methylphenol	•	ND	ND
2-Methylnapthalene	10,000	ND	ND
Hexachlorcyclopentadiene		ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene	. -	ND	ND
2-Nitroaniline	-	ND ·	ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	0.053 J	0.230 J
2,6-Dinitrotoluene	•	ND	ND
3-Nitroaniline	-	ND	ND
Acenapthene	10,000	ND	0.065 J
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	-	ND	ND
Dibenzofuran	•	ND	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000	ND	0.044 J
4-Chlorophenyl-phenylether	•	ND	ND
4-Nitroaniline	•	ND	ND
4,6-Dinitro-2-methylphenol	- .	ND	ND
n-Nitrosodiphenylamine	-	ND	ND
4-Bromophenyl-phenylether	-	ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	0.140 J	0.180 J
Anthracene	10,000	0.110 J	0.620
Di-n-butylphthalate	•	0.041 J	ND
Carbazole	-	ND	0.057 J
Fluoranthene	10,000	0.360 J	0.870
Pyrene	10,000	0.320 J	1.40
Butylbenzylphthalate	-	ND	ND
Benzo(a)anthracene	7.8	0.230 J	0.910
Chrysene	780	0.410 J	2.10
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	ND	0.078 J
Di-n-octylphthalate	-	ND	ND
Benzo(b)fluoranthene	7.8	0.630	2.90
Benzo(k)fluoranthene	78	0.160 J	1.10
Benzo(a)pyrene	0.8	0.360 J	1.80
Indeno(1,2,3-cd)pyrene	7.8	0.190 J	0.670

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

•)

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-PIPE-SS-15 12/10/97
Dibenzo(a,h)anthracene	0.8	0.064 J	0.240 J
Benzo(g,h,i)perylene	10,000	0.200 J	0.650

•

EBS Review Item 28
Piping Excavation Confirmat ry Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria	EBS28-PIPE-SS-15	PRESIDENTE SWEAR
(ppm)	Industrial/Commercial	12/17/97	12/16/97
TPH (field screening)	<u>- </u>	250	256
TPH-IR (Method 418.1)	2,500*	41	40
TPH-GRO (Method 8015M)	2,500*	-	-
VOCs (Method 8260)			
Dichlorodifluoromethane	T - 1	ND	ND
Chloromethane	- 1	ND	ND
Vinyl chloride	3.0	ND	ND
Bromomethane	2,900	ND	ND
Chloroethane	-	ND	ND
Trichlorofluoromethane	-	ND	ND
1,1-Dichloroethene	9.5	ND	ND
Carbon disulfide	-	ND	ND
Iodomethane	-	ND	ND
Acetone	10,000	0.010	ND
Methylene chloride	760	ND	ND ·
trans-1,2-Dichloroethene	10,000	ND	ND
1,1-Dichloroethane	10,000	ND	ND
Vinyl acetate	-	ND	ND
2,2-Dichloropropane	-	ND	ND
cis-1,2-Dichloroethene	10,000	ND	ND
Methyl ethyl ketone	10,000	ND	ND
Bromochloromethane		ND	ND
Chloroform	940	ND	ND
1,1,1-Trichloroethane	10,000	ND	ND
Carbon tetrachloride	44	ND	ND
1,1-Dichloropropene		ND	ND
Benzene	200	ND	ND
1,2-Dichloroethane	63	ND	ND
Trichloroethene	520	ND	ND
1,2-Dichloropropane	84	ND	ND
Dibromomethane	-	ND	ND
Bromodichloromethane	92	ND	ND
2-Chloroethyl vinyl ether	-	ND	ND
cis-1,3-Dichloropropene	10.000	ND	ND
4-Methyl-2-pentanone	10,000	ND	ND
Toluene	10,000	ND	ND
trans-1,3-Dichloropropene	<u> </u>	ND	ND
1,1,2-Trichloroethane	100	ND	ND
Tetrachloroethene	110	ND	ND
1,3-Dichloropropane		ND	ND
2-Hexanone		ND	ND
Dibromochloromethane	68	ND	ND
1,2-Dibromoethane	0.07	ND	ND
Chlorobenzene	10,000	ND	ND
1,1,1,2-Tetrachloroethane	220	ND	ND
Ethylbenzene	10,000	ND	ND
Xylenes (total)	10,000	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

}

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial	EBS28-PIPE-SS-15 12/17/97	ERS28-PIPE-SWE- 12/10/97
Styrene	190	ND	ND
Bromoform	720	ND	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	-	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	-	ND	ND
n-Propylbenzene	•	ND	ND
2-Chlorotoluene	-	ND	ND
4-Chlorotoluene	•	ND	ND
1,3,5-Trimethylbenzene	-	ND	ND
tert-Butylbenzene	-	ND ND	ND
1,2,4-Trimethylbenzene	-	ND ND	ND ND
sec-Butylbenzene	-	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
4-Isopropyltoluene	240	ND	ND
1,4-Dichlorobenzene 1,2-Dichlorobenzene	10,000	ND	ND
n-Butylbenzene	-	ND	ND
1,2-Dibromo-3-chloropropane	4.1	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Hexachlorobutadiene	-	ND _E .	ND
1,2,3-Trichlorobenzene	•	ND	ND
Methyl-t-Butyl Ether	10,000	ND	ND
Napthalene	10,000	ND	ND
Cs (Method 8270)			
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1.2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol	•	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol	_ :	ND	ND
n-Nitroso-di-n-propylamine	_	ND	ND
Hexachloroethane	410	ND	ND
Nitrobenzene	-	ND	ND
		ND	
Isophorone	-		ND
2-Nitrophenol	-	ND	ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	•	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	ND	ND
4-Chloroaniline	8,200	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

analytical parameter	Direct Exposure Criteria		BUCZE-PIPE-SWE.
(ppm)	Industrial/Commercial	12/17/97	12/10/97
Hexachlorobutadiene	73	ND	ND
4-Chloro-3-methylphenol	•	ND	ND
2-Methylnapthalene	10,000	ND	ND
Hexachlorcyclopentadiene	-	ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene	-	ND	ND
2-Nitroaniline	-	ND	ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	ND	ND
2,6-Dinitrotoluene	-	ND	ND
3-Nitroaniline	-	ND	ND
Acenapthene	10,000	ND	ND
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	_	ND	ND
Dibenzofuran	•	ND	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000 ···	ND	ND
4-Chlorophenyl-phenylether	•	ND	ND
4-Nitroaniline	-	ND	ND
4,6-Dinitro-2-methylphenol	• ·	ND	ND
n-Nitrosodiphenylamine	•	ND	ND
4-Bromophenyl-phenylether	•	ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND ~
Phenanthrene	10,000	0.077 J	ND
Anthracene	10,000	ND	ND
Di-n-butylphthalate	-	ND	ND
Carbazole	•	ND	ND
Fluoranthene	10,000	ND	ND
Pyrene	10,000	ND	ND
Butylbenzylphthalate	-	ND	ND
Benzo(a)anthracene	7.8	ND	ND
Chrysene	780	ND	0.081 J
3,3'-Dichlorobenzidine	13	ND :	ND
bis(2-Ethylhexyl)phthalate	410	ND	ND
Di-n-octylphthalate		ND	ND
Benzo(b)fluoranthene	7.8	ND	0.090 J
Benzo(k)fluoranthene	78	ND	ND
Benzo(a)pyrene	0.8	ND	0.044 J
Indeno(1,2,3-cd)pyrene	7.8	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

Þ

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-PIPE/SWE-15 12/16/97
Dibenzo(a,h)anthracene	0.8	ND	ND ND
Benzo(g,h,i)perylene	10,000	ND	ND

EBS Review Item 28 Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria	BEGSYS PIPESSWAVE F	EBS28:DIPESSEGI
(ppm)	Industrial/Commercial		12/10/97
TPH (field screening)	-	152	530
TPH-IR (Method 418.1)	2,500*	69	430
TPH-GRO (Method 8015M)	2,500*	-	ND
VOCs (Method 8260)			
Dichlorodifluoromethane	-	ND	ND
Chloromethane	-	ND	ND
Vinyl chloride	3.0	ND	ND
Bromomethane	2,900	ND	ND
Chloroethane	-	ND	ND
Trichlorofluoromethane	-	ND	ND
1,1-Dichloroethene	9.5	ND	ND
Carbon disulfide	-	ND	ND
Iodomethane	-	ND	ND
Acetone	10,000	0.016	ND
Methylene chloride	760	ND	ND
trans-1,2-Dichloroethene	10,000	ND	ND
1,1-Dichloroethane	10,000	ND	ND
Vinyl acetate	-	ND	ND
2,2-Dichloropropane	<u> </u>	ND	ND
cis-1,2-Dichloroethene	10,000	ND	ND
Methyl ethyl ketone	10,000	ND	ND
Bromochloromethane		ND	ND
Chloroform	940	ND	ND
1,1,1-Trichloroethane	10,000	ND	ND
Carbon tetrachloride	44	ND	ND
1,1-Dichloropropene	-	ND	ND
Benzene	200	ND	ND
1,2-Dichloroethane	63	ND	ND
Trichloroethene	520	ND	ND
1,2-Dichloropropane	84	ND ND	ND
Dibromomethane	-	ND	ND
Bromodichloromethane	92	ND ND	ND
2-Chloroethyl vinyl ether	-	ND ND	ND
cis-1,3-Dichloropropene	10,000	ND ND	ND
4-Methyl-2-pentanone		ND ND	ND
Toluene	10,000	ND ND	ND
trans-1,3-Dichloropropene	100	ND ND	ND
1,1,2-Trichloroethane	100	ND	ND ND
Tetrachloroethene	110	ND	
1,3-Dichloropropane	-		ND
2-Hexanone		ND	ND
Dibromochloromethane	68	ND	ND
1,2-Dibromoethane	0.07	ND	ND
Chlorobenzene	10,000	ND NED	ND
1,1,1,2-Tetrachloroethane	220	ND ND	ND
Ethylbenzene	10,000	ND	ND
Xylenes (total)	10,000	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review It m 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria		EBS28-PIPE-SS-30
(ppm)	Industrial/Commercial	12/10/97	12/10/97
Styrene	190	ND	ND
Bromoform	720	ND	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	-	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	-	ND	ND
n-Propylbenzene		ND	ND ND
2-Chlorotoluene	•	ND ND	ND
4-Chlorotoluene		ND ND	ND
1,3,5-Trimethylbenzene	• • • • • • • • • • • • • • • • • • •	ND ND	ND
tert-Butylbenzene	•	ND ND	ND ND
1,2,4-Trimethylbenzene	•	ND ND	ND ND
sec-Butylbenzene 1,3-Dichlorobenzene	10,000	ND	ND ND
4-Isopropyltoluene	10,000	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1,2-Dichlorobenzene	10,000	ND	ND
n-Butylbenzene	-	ND	ND
1,2-Dibromo-3-chloropropane	4.1	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Hexachlorobutadiene	-	ND	ND
1,2,3-Trichlorobenzene	•	ND	ND
Methyl-t-Butyl Ether	10,000	ND	ND
Napthalene	10,000	ND	ND
OCs (Method 8270)		· · · · · · · · · · · · · · · · · · ·	· ·
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND ·	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1,2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol	•	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol	-	ND	ND
n-Nitroso-di-n-propylamine	-	ND	ND
Hexachloroethane	410	ND	ND
Nitrobenzene	*10	ND	
			ND
Isophorone	•	ND	ND
2-Nitrophenol	-	ND	ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	•	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	ND	ND
4-Chloroaniline	8,200	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Craeria	STATES OF THE PROPERTY OF THE	EBS29-PIPE-SS-30
(ppm)	Industrial/Commercial		12/10/97
Hexachlorobutadiene	73	ND	. ND
4-Chloro-3-methylphenol	-	ND	ND
2-Methylnapthalene	10,000	ND	ND
Hexachlorcyclopentadiene	-	ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene	-	ND	ND
2-Nitroaniline	-	ND	ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	ND	ND
2,6-Dinitrotoluene	-	ND	ND
3-Nitroaniline	-	ND	ND
Acenapthene	10,000	ND	ND
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	•	ND	ND
Dibenzofuran	-	ND	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000	ND	ND
4-Chlorophenyl-phenylether	•	ND	, ND
4-Nitroaniline	•	ND	ND
4,6-Dinitro-2-methylphenol	•	ND	ND
n-Nitrosodiphenylamine	-	ND	ND
4-Bromophenyl-phenylether	-	ND	ND
Hexachlorobenzene	3.6	ND ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	ND	ND
Anthracene	10,000	ND	ND
Di-n-butylphthalate		ND	ND
Carbazole	-	ND	ND
Fluoranthene	10,000	ND	0.054 J
Pyrene	10,000	0.042 J	0.084 J
Butylbenzylphthalate	-	ND	ND
Benzo(a)anthracene	7.8	ND	ND
Chrysene	780	0.078 J	0.040 J
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	ND	ND
Di-n-octylphthalate	-	ND	ND
Benzo(b)fluoranthene	7.8	0.110 J	0.065 J
Benzo(k)fluoranthene	78	0.045 J	ND
Benzo(a)pyrene	0.8	0.049 J	0.050 J
Indeno(1,2,3-cd)pyrene	7.8	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

Benzo(g,h,i)perylene	10,000	ND	ND
Dibenzo(a,h)anthracene	0.8	ND	ND
ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-PIPE-SS-10 12/16/97

•

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

-	4		
ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-PIPE-SWW-36 12/10/97
TPH (field screening)	-	590	728
TPH-IR (Method 418.1)	2,500*	130	110
TPH-GRO (Method 8015M)	2,500*	- 150	110
VOCs (Method 8260)	2,300	•	•
		ND	ND
Dichlorodifluoromethane	<u> </u>	ND	ND
Chloromethane	3.0	ND	ND
Vinyl chloride	2,900	ND	ND
Bromomethane Chloroethane	2,300	ND	ND
Trichlorofluoromethane		ND	ND
l,1-Dichloroethene	9.5	ND	ND
Carbon disulfide		ND	ND
Iodomethane	-	ND	ND
Acetone	10,000	ND	ND
Methylene chloride	760	ND	ND
trans-1,2-Dichloroethene	10,000	ND	ND
1,1-Dichloroethane	10,000	ND	ND
Vinyl acetate	•	ND	ND
2,2-Dichloropropane	-	ND	ND
cis-1,2-Dichloroethene	10,000	ND	ND
Methyl ethyl ketone	10,000	ND	ND
Bromochloromethane		ND	ND,
Chloroform	940	ND	ND.
1,1,1-Trichloroethane	10,000	ND	ND
Carbon tetrachloride	44	ND	ND
1,1-Dichloropropene	<u>.</u>	ND	ND
Benzene	200	ND	ND
1,2-Dichloroethane	63	ND	ND
Trichloroethene	520	ND	ND
1,2-Dichloropropane	84	ND	ND
Dibromomethane		ND ND	ND
Bromodichloromethane	92	ND	ND
2-Chloroethyl vinyl ether	•	ND	ND
cis-1,3-Dichloropropene	-	ND	ND
4-Methyl-2-pentanone	10,000	ND	ND
Toluene	10,000	ND	ND
trans-1,3-Dichloropropene		ND	ND
1,1,2-Trichloroethane	100	ND	ND
Tetrachloroethene	110	ND	ND
1,3-Dichloropropane	•	ND	ND
2-Hexanone	<u>.</u>	ND	ND
Dibromochloromethane	68	ND	ND
1,2-Dibromoethane	0.07	ND	ND
Chlorobenzene	10,000	ND	ND
1,1,1,2-Tetrachloroethane	220	ND	ND
Ethylbenzene	10,000	ND	ND
Xylenes (total)	10,000	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Ехро вите Ст негія		
(ppm)	Industrial/Commercial	12/19/97	12/10/97
Styrene	190	ND	ND
Bromoform	720	ND ND	ND
Isopropylbenzene	10,000	ND ND	ND
Bromobenzene	29	ND ND	ND ND
1,1,2,2-Tetrachloroethane	- 29	ND ND	ND
1,2,3-Trichloropropane n-Propylbenzene		ND	ND
2-Chlorotoluene		ND	ND
4-Chlorotoluene	_	ND	ND
1,3,5-Trimethylbenzene	_	ND	ND
tert-Butylbenzene	. •	ND	ND
1,2,4-Trimethylbenzene	-	ND	ND
sec-Butylbenzene	-	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
4-Isopropyltoluene	-	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1,2-Dichlorobenzene	10,000	ND	ND
n-Butylbenzene	-	ND	ND
1,2-Dibromo-3-chloropropane	4.1	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Hexachlorobutadiene	<u> </u>	ND ND	ND
1,2,3-Trichlorobenzene	10.000	ND ND	ND ND
Methyl-t-Butyl Ether Napthalene	10,000 10,000	ND ND	ND ND
OCs (Method 8270)	10,000	ND	ND
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND ·	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND ND	ND
1,4-Dichlorobenzene	240	ND ND	
1,4-Dichlorobenzene	10,000	ND ND	ND
	10,000		ND ND
2-Methylphenol	-	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND ND
4-Methylphenol	-	ND	ND
n-Nitroso-di-n-propylamine	•	ND	ND
Hexachloroethane	410	ND	ND
Nitrobenzene	-	ND	ND
Isophorone	•	ND	ND
2-Nitrophenol	-	ND	ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane		ND	ND
2,4-Dichlorophenol	6,100	ND	ND
			
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	ND	ND
4-Chloroaniline	8,200	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Ducce Exposure Criteria	BBS283PIBBSW898	EBS28-PIPE-SW/W/S0
(ppm)	Industrial/Commercial	12/19/97	12/16/97
Hexachlorobutadiene	73	ND	ND
4-Chloro-3-methylphenol	•	ND	ND
2-Methylnapthalene	10,000	ND	ND
Hexachlorcyclopentadiene	•	ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene	•	ND	ND
2-Nitroaniline	•	ND	ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	0.056 J	0.082 J
2,6-Dinitrotoluene	•	ND	ND
3-Nitroaniline	-	ND	ND
Acenapthene	10,000	ND	ND
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	•	ND	ND
Dibenzofuran	•	ND	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fhuorene	10,000	ND	ND .
4-Chlorophenyl-phenylether	<u> </u>	ND ND	ND
4-Nitroaniline	-	ND	ND
4,6-Dinitro-2-methylphenol	·	ND	ND
n-Nitrosodiphenylamine		ND	ND
4-Bromophenyl-phenylether	<u> </u>	ND ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	ND	0.051 J
Anthracene	10,000	0.068 J	0.095 J
Di-n-butylphthalate		ND ND	ND
Carbazole		ND	ND ND
Fluoranthene	10,000	0.095 J	0.170 J
Pyrene	10,000	0.120 J	0.210 J
Butylbenzylphthalate		ND ND	ND
Benzo(a)anthracene	7.8	0.059 J	0.120 J
Chrysene	780	0.110 J	0.210 J
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	ND	0.086 J
Di-n-octylphthalate	•	ND	ND
Benzo(b)fluoranthene	7.8	0.240 J	0.440
Benzo(k)fluoranthene	78	0.078 J	0.160 J
Benzo(a)pyrene	0.8	0.120 J	0.200 J
Indeno(1,2,3-cd)pyrene	7.8	0.140 J	0.220 J

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-PIPE-SWW-30 12/16/97
Dibenzo(a,h)anthracene	0.8	0.041 J	0.072 J
Benzo(g,h,i)perylene	10,000	0.160 J	0.220 J

)

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial	EBS28-PIPE-58-45 12/18/97	EBS28-PIPE-SWP-45 12/10/97
TPH (field screening)	-	618	546
TPH-IR (Method 418.1)	2,500*	400	110
TPH-GRO (Method 8015M)	2,500*		-
VOCs (Method 8260)	2,300		<u> </u>
Dichlorodifluoromethane		ND	ND
Chloromethane		ND	ND
Vinyl chloride	3.0	ND	ND
	2,900	ND	ND ND
Bromomethane		ND ND	ND ND
Chloroethane Trichlorofluoromethane	-	ND	ND ND
1,1-Dichloroethene	9.5	ND	ND ND
Carbon disulfide		ND	ND ND
Iodomethane	-	ND	ND
Acetone	10,000	ND	ND
Methylene chloride	760	ND	ND
trans-1,2-Dichloroethene	10,000	ND	ND
1,1-Dichloroethane	10,000	ND	ND
Vinyl acetate	10,000	ND	ND
2,2-Dichloropropane	_	ND	ND
cis-1,2-Dichloroethene	10,000	ND	ND
Methyl ethyl ketone	10,000	ND	ND
Bromochloromethane		ND	ND
Chloroform	940	ND	ND
1,1,1-Trichloroethane	10,000	ND	ND
Carbon tetrachloride	44	ND	ND
1,1-Dichloropropene	-	ND	ND
Benzene	200	ND	ND
1,2-Dichloroethane	63	ND	ND
Trichloroethene	520	ND	ND
1,2-Dichloropropane	84	ND	ND
Dibromomethane	-	ND	ND
Bromodichloromethane	92	ND	ND
2-Chloroethyl vinyl ether	-	ND	ND
cis-1,3-Dichloropropene	-	ND	ND
4-Methyl-2-pentanone	10,000	ND	ND
Toluene	10,000	ND	ND
trans-1,3-Dichloropropene	/	ND	ND
1,1,2-Trichloroethane	100	ND	ND
Tetrachloroethene	110	ND	ND
1,3-Dichloropropane	-	ND	ND
2-Hexanone	-	ND	ND
Dibromochloromethane	68	ND	ND
1,2-Dibromoethane	0.07	ND	ND
Chlorobenzene	10,000	ND	ND
1,1,1,2-Tetrachloroethane	220	ND	ND
Ethylbenzene	10,000	ND	ND
	10,000	ND	ND
Xylenes (total)	10,000	עא	עא

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

þ

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria	EBS28-PIPE-SS-45	EBS28-PIPE-SWE-4
(рриг)	Industrial/Commercial	12/10/97	12/10/97
Styrene	190	ND	ND
Bromoform	720	ND	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	•	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	<u>-</u>	ND	ND
n-Propylbenzene	<u>-</u>	ND	ND
2-Chlorotoluene		ND ND	ND
4-Chlorotoluene	-	ND ND	ND ND
1,3,5-Trimethylbenzene		ND ND	ND
tert-Butylbenzene 1,2,4-Trimethylbenzene	-	ND ND	ND
sec-Butylbenzene	<u> </u>	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
4-Isopropyltoluene	-	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1,2-Dichlorobenzene	10,000	ND	ND
n-Butylbenzene	-	ND	ND
1,2-Dibromo-3-chloropropane	4.1	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Hexachlorobutadiene	-	ND	ND
1,2,3-Trichlorobenzene		ND	ND
Methyl-t-Butyl Ether	10,000	ND	ND
Napthalene	10,000	ND	ND .
VOCs (Method 8270)			
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND	NĎ
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	0.480	ND
1,2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol	-	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol	-	ND	ND
n-Nitroso-di-n-propylamine	•	ND	ND
Hexachloroethane	410	ND	ND
Nitrobenzene	_	ND	ND
Isophorone		ND	
	•		ND
2-Nitrophenol	-	ND	ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	<u> </u>	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	0.110 J	ND
4-Chloroaniline	8,200	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

,)

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALY FICAL PARAMETER	Direct Exposure Criteria	ERS28-PIPE-SS-45	G FRYSPIPESWE	
(ppm)	industrial/Commercial	12/19/97	12/16/97	
Hexachlorobutadiene	73	ND	ND	
4-Chloro-3-methylphenol	-	ND	ND	
2-Methylnapthalene	10,000	0.056 J	ND	
Hexachlorcyclopentadiene	-	ND	ND ·	
2,4,6-Trichlorophenol	520	ND	ND	
2,4,5-Trichlorophenol	10,000	ND	ND	
2-Chloronapthalene	•	ND	ND	
2-Nitroaniline		ND	ND	
Dimethylphthalate	10,000	ND	ND	
Acenaphthylene	10,000	ND	ND	
2,6-Dinitrotoluene	•	ND	ND	
3-Nitroaniline	-	ND	ND	
Acenapthene	10,000	0.075 J	ND	
2,4-Dinitrophenol	4,100	ND	ND	
4-Nitrophenol	-	ND	ND	
Dibenzofuran	-	0.079 J	ND	
2,4-Dinitrotoluene	8.4	ND	ND	
Diethylphthalate	10,000	ND	ND	
Fluorene	10,000	0.071 J	ND	
4-Chlorophenyl-phenylether	•	ND .	ND	
4-Nitroaniline	-	ND	ND	
4,6-Dinitro-2-methylphenol	-	· ND	ND	
n-Nitrosodiphenylamine	-	ND	ND	
4-Bromophenyl-phenylether	•	ND	ND	
Hexachlorobenzene	3.6	ND	ND	
Pentachlorophenol	48	ND	ND	
Phenanthrene	10,000	1.10	ND	
Anthracene	10,000	0.100 J	ND	
Di-n-butylphthalate	-	ND	ND	
Carbazole	•	0.100 J	ND	
Fluoranthene	10,000	1.30	ND	
Pyrene	10,000	1.50	0.049 J	
Butylbenzylphthalate	•	ND	ND	
Benzo(a)anthracene	7.8	0.280 J	ND	
Chrysene	780	0.790	0.063 J	
3,3'-Dichlorobenzidine	13	ND	ND	
bis(2-Ethylhexyl)phthalate	410	ND	ND	
Di-n-octylphthalate	•	ND	ND	
Benzo(b)fluoranthene	7.8	1.10	0.099 J	
Benzo(k)fluoranthene	78	0.580	ND	
Benzo(a)pyrene	0.8	0.620	0.038 J	
Indeno(1,2,3-cd)pyrene	7.8	0.250 J	ND	

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EBS28-PIPE-SWE-48 12/16/97
Dibenzo(a,h)anthracene	0.8	0.072 J	ND
Benzo(g,h,i)perylene	10,000	0.250 J	0.041 J

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria Industrial/Commercial		12/10/97
TPH (field screening)	8 38 111 (ONE) 15 15 15 15 15 15 15 15 15 15 15 15 15	576	550
	2,500*	170	
TPH-IR (Method 418.1)		170	620
TPH-GRO (Method 8015M)	2,500*	•	-
VOCs (Method 8260)	 		
Dichlorodifluoromethane	-	ND	ND
Chloromethane	<u> </u>	ND	ND
Vinyl chloride	3.0	ND	ND
Bromomethane	2,900	ND ND	ND
Chloroethane	<u> </u>	ND	ND
Trichlorofluoromethane	<u> </u>	ND	ND
1,1-Dichloroethene	9.5	ND	ND
Carbon disulfide	<u> </u>	ND	ND
Iodomethane	· -	ND	ND
Acetone	10,000	ND	0.017
Methylene chloride	760	ND	ND
trans-1,2-Dichloroethene	10,000	ND	ND
1.1-Dichloroethane	10,000	ND	ND
Vinyl acetate	•	ND	ND
2.2-Dichloropropane	-	ND	ND
cis-1,2-Dichloroethene	10,000	ND	ND
Methyl ethyl ketone	10,000	ND	ND
Bromochloromethane	•	ND	ND
Chloroform	940	ND NE	ND.
1,1,1-Trichloroethane	10,000	ND	ND
Carbon tetrachloride	44	ND ND	ND
1.1-Dichloropropene	-	ND	ND
Benzene	200	ND	ND
1,2-Dichloroethane	63	ND	ND
Trichloroethene	520	ND	ND
1,2-Dichloropropane	84	ND	ND
Dibromomethane	<u> </u>	ND	ND
Bromodichloromethane	92	ND	ND
2-Chloroethyl vinyl ether	-	ND	ND
cis-1,3-Dichloropropene	-	ND	ND
4-Methyl-2-pentanone	10,000	ND ND	ND
Toluene	10,000	ND	ND
trans-1,3-Dichloropropene	-	ND	ND
1.1,2-Trichloroethane	100	ND	ND
Tetrachloroethene	110	ND	ND
1,3-Dichloropropane		ND	ND
2-Hexanone	-	ND	ND
Dibromochloromethane	68	ND	ND
1.2-Dibromoethane	0.07	ND	ND
Chlorobenzene	10,000	ND	ND
1.1,1,2-Tetrachloroethane	220	ND	ND
Ethylbenzene	10,000	ND	ND
Xylenes (total)	10,000	ND	ND
Ayiciics (total)	10,000		

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria	WESTERN WAS TO SERVE WAS TO SER	EBSZEPIEŁ SSKO
(ppm)	Industrial/Commercial	12/19/97	12/10/97
Styrene	190	ND	ND
Bromoform	720	ND	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	<u> </u>	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	•	ND	ND
n-Propylbenzene	-	ND	ND
2-Chlorotoluene	<u></u>	ND	ND
4-Chlorotoluene	-	ND_	ND .
1,3,5-Trimethylbenzene	•	ND	ND
tert-Butylbenzene	-	ND	ND
1,2,4-Trimethylbenzene		ND	ND
sec-Butylbenzene	-	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
4-Isopropyltoluene	-	ND ND	ND
1,4-Dichlorobenzene	240	ND ND	ND ND
1,2-Dichlorobenzene n-Butylbenzene	10,000	ND ND	ND ND
1,2-Dibromo-3-chloropropane	4.1	ND	ND ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Hexachlorobutadiene	10,000	ND	ND
1,2,3-Trichlorobenzene	•	ND	ND
Methyl-t-Butyl Ether	10,000	ND	ND
Napthalene	10,000	ND	. ND
SVOCs (Method 8270)			
Phenol	10,000	ND	ND ·
bis(2-Chloroethyl)ether	5.2	ND	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	ND	0.380 J
1.2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol		ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol	_	ND	ND
n-Nitroso-di-n-propylamine	-	ND	ND
Hexachloroethane	410	ND	
			ND ND
Nitrobenzene	-	ND	ND
Isophorone	-	ND	ND ND
2-Nitrophenol	-	ND	ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	-	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	ND	ND
4-Chloroaniline	8,200	ND	
4-Chioroanime	0,200	עא	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

ANALYTICAL PARAMETER	Direct Exposure Criteria	EBS28-PIPESWW45	BERNEDING (
(ppm)	Industrial/Commercial	12/10/97	12/10/97
Hexachlorobutadiene	73	ND	ND
4-Chloro-3-methylphenol	-	ND	ND
2-Methylnapthalene	10,000	ND	ND
Hexachlorcyclopentadiene	-	ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene	-	ND	ND
2-Nitroaniline	-	ND	ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	ND	ND
2,6-Dinitrotoluene	-	ND	ND
3-Nitroaniline	-	ND	ND
Acenapthene	10,000	ND	ND
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	•	ND	ND
Dibenzofuran	-	ND	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000	ND	ND
4-Chlorophenyl-phenylether	• .	ND	ND
4-Nitroaniline	-	ND ND	ND
4,6-Dinitro-2-methylphenol		ND	ND
n-Nitrosodiphenylamine	-	ND	ND
4-Bromophenyl-phenylether	•	ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	ND	0.044 J
Anthracene	10,000	ND	ND
Di-n-butylphthalate	-	ND	ND
Carbazole	-	ND	ND
Fluoranthene	10,000	ND	0.070 J
Pyrene	10,000	ND	0.160 J
Butylbenzylphthalate	•	ND	ND
Benzo(a)anthracene	7.8	ND	0.058 J
Chrysene	780	ND	0.120 J
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	ND	0.100 J
Di-n-octylphthalate	•	ND	ND
Benzo(b)fluoranthene	7.8	0.042 J	0.170 J
Benzo(k)fluoranthene	78	ND ND	0.067 J
Benzo(a)pyrene	0.8	ND ND	0.086 J
Indeno(1,2,3-cd)pyrene	7.8	ND	0.048 J

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

ANALYTICAL PARAMETER (ppm)	Direct Esposure Criteria Industrial/Commercial		EBS28-PIPE-SS-60 12/10/97
Dibenzo(a,h)anthracene	0.8	ND	ND
Benzo(g,h,i)perylene	10,000	ND	0.054 J

ANALYTICAL PARAMETER		EBS28-PIPE-SWE-60	
(ppm)	Industrial/Commercial	12/19/97	12/10/97
TPH (field screening)		248	340
TPH-IR (Method 418.1)	2,500*	78	160
TPH-GRO (Method 8015M)	2,500*	-	•
VOCs (Method 8260)			
Dichlorodifluoromethane	<u> </u>	ND	ND
Chloromethane		ND	ND
Vinyl chloride	3.0	ND	ND
Bromomethane	2,900	ND	ND
Chloroethane	_	ND	ND
Trichlorofluoromethane	_	ND	ND
1,1-Dichloroethene	9.5	ND	ND
Carbon disulfide	-	ND ND	ND
Iodomethane	-	ND	ND
Acetone	10,000	ND	ı 0.008
Methylene chloride	760	ND	ND
trans-1,2-Dichloroethene	10,000	ND	ND
1,1-Dichloroethane	10,000	ND	ND
Vinyl acetate	-	ND	ND
2,2-Dichloropropane	-	ND	ND
cis-1,2-Dichloroethene	10,000	ND	ND
Methyl ethyl ketone	10,000	ND	ND
Bromochloromethane		ND	ND
Chloroform	940	ND	ND
1,1,1-Trichloroethane	10,000	ND	ND
Carbon tetrachloride	44	ND	ND
1,1-Dichloropropene	-	ND	ND
Benzene	200	ND	ND
1,2-Dichloroethane	63	ND	ND
Trichloroethene	520	ND	ND
1,2-Dichloropropane	84	ND	ND
Dibromomethane		ND	ND
Bromodichloromethane	92	ND	ND
2-Chloroethyl vinyl ether	<u> </u>	ND	ND
cis-1,3-Dichloropropene	<u> </u>	ND	ND
4-Methyl-2-pentanone	10,000	ND	ND
Toluene	10,000	ND	ND
trans-1,3-Dichloropropene	-	ND	ND
1,1,2-Trichloroethane	100	ND	ND
Tetrachloroethene	110	ND	ND
1,3-Dichloropropane	-	ND	ND
2-Hexanone	-	ND	ND
Dibromochloromethane	68	ND	ND
1,2-Dibromoethane	0.07	ND	ND
Chlorobenzene	10,000	ND	ND
1,1,1,2-Tetrachloroethane	220	ND ND	ND
Ethylbenzene	10,000	ND ND	ND
	10,000	ND ND	ND
Xylenes (total)	1 10,000	110	NU

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

}

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALYTICAL BARAMETER	Direct Exposure Criteria	BOBSZEESTYZZNYZEGE	ERCS:2010XSV:VXX
(ppm)	Industrial/Commercial	12/10/97	12/16/97
Styrene	190	ND	ND
Bromoform	720	ND	ND
Isopropylbenzene	10,000	ND	ND
Bromobenzene	•	ND	ND
1,1,2,2-Tetrachloroethane	29	ND	ND
1,2,3-Trichloropropane	-	ND	ND
n-Propylbenzene	•	ND	ND
2-Chlorotoluene	-	ND	ND
4-Chlorotoluene	•	ND	ND
1,3,5-Trimethylbenzene	-	ND	ND
tert-Butylbenzene		ND	ND
1,2,4-Trimethylbenzene	•	ND	ND
sec-Butylbenzene	-	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
4-Isopropyltoluene		ND	ND
1,4-Dichlorobenzene	240	ND	ND
1,2-Dichlorobenzene	10,000	ND ND	ND
n-Butylbenzene 1,2-Dibromo-3-chloropropane	4.1	ND ND	ND
1,2,4-Trichlorobenzene	10,000	ND ND	ND
Hexachlorobutadiene	10,000	ND	ND ND
1,2,3-Trichlorobenzene		ND ND	ND ND
Methyl-t-Butyl Ether	10,000	ND	ND ND
Napthalene	10,000	ND	ND
SVOCs (Method 8270)		•	
Phenol	10,000	ND	ND
bis(2-Chloroethyl)ether	5.2	ND	ND
2-Chlorophenol	10,000	ND	ND
1,3-Dichlorobenzene	10,000	ND	ND
1,4-Dichlorobenzene	240	ND	ND
1,2-Dichlorobenzene	10,000	ND	ND
2-Methylphenol	-	ND	ND
2,2'-oxybis(1-Chloropropane)	82	ND	ND
4-Methylphenol	-	ND	ND
n-Nitroso-di-n-propylamine	-	ND	ND
Hexachloroethane	410	ND	ND
Nitrobenzene	-	ND	ND
Isophorone	-	ND	ND
2-Nitrophenol		ND ND	
	-		ND
2,4-Dimethylphenol	10,000	ND	ND
bis(2-Chloroethoxy)methane	- (100	ND	ND
2,4-Dichlorophenol	6,100	ND	ND
1,2,4-Trichlorobenzene	10,000	ND	ND
Napthalene	10,000	ND	ND
4-Chloroaniline	8,200	ND	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

EBS Review Item 28
Piping Excavation Confirmatory Sample Results

ANALONE CALUPATAMES EET	Direct Ехровите Стаета		
ANALI IKAL PARAMETER (PPD)	Industrial/Commercial	12/19/97	ERS28-PIPE-5-WA 12/16/97
Hexachlorobutadiene	73	ND	ND
4-Chloro-3-methylphenol	-	ND	ND
2-Methylnapthalene	10,000	ND	ND
Hexachlorcyclopentadiene		ND	ND
2,4,6-Trichlorophenol	520	ND	ND
2,4,5-Trichlorophenol	10,000	ND	ND
2-Chloronapthalene	-	ND	ND
2-Nitroaniline	-	ND	ND
Dimethylphthalate	10,000	ND	ND
Acenaphthylene	10,000	ND	ND
2,6-Dinitrotoluene	-	ND	ND
3-Nitroaniline	-	ND	ND
Acenapthene	10,000	ND	ND
2,4-Dinitrophenol	4,100	ND	ND
4-Nitrophenol	-	ND	ND
Dibenzofuran	-	ND	ND
2,4-Dinitrotoluene	8.4	ND	ND
Diethylphthalate	10,000	ND	ND
Fluorene	10,000	ND	ND
4-Chlorophenyl-phenylether	.	. ND	, ND
4-Nitroaniline	-	ND	ND
4,6-Dinitro-2-methylphenol	-	ND	ND
n-Nitrosodiphenylamine	-	ND	ND
4-Bromophenyl-phenylether	-	ND	ND
Hexachlorobenzene	3.6	ND	ND
Pentachlorophenol	48	ND	ND
Phenanthrene	10,000	ND	ND
Anthracene	10,000	ND	ND
Di-n-butylphthalate	-	ND	ND
Carbazole	-	ND	ND
Fluoranthene	10,000	ND	0.052 J
Pyrene	10,000	ND	0.052 J
Butylbenzylphthalate	-	ND /	ND
Benzo(a)anthracene	7.8	ND	0.039 J
Chrysene	780	0.084 J	0.075 J
3,3'-Dichlorobenzidine	13	ND	ND
bis(2-Ethylhexyl)phthalate	410	ND	ND
Di-n-octylphthalate	-	ND	ND
Benzo(b)fluoranthene	7.8	0.140 J	0.110 J
Benzo(k)fluoranthene	78	0.054 J	0.042 J
Benzo(a)pyrene	0.8	0.074 J	0.046 J
Indeno(1,2,3-cd)pyrene	7.8	0.049 J	ND

^{*} This value is based on total TPH which is considered the sum of TPH-IR and TPH-GRO

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial		EHS28-PIPE SWW.44 12/10/97
Dibenzo(a,h)anthracene	0.8	ND	ND
Benzo(g,h,i)perylene	10,000	0.051 J	ND

EBS Review Item 28 EPA-Requested Piping Excavation Sample Results

ANALYTICAL PARAMETER	Direct Exposure Criteria	EBS28-PIPE-SS4
(ppm)	Industrial/Commercial	12/30/97
TCL PEST/PCBs (Method 8080)		
alpha-BHC	•	ND
gamma-BHC	•	ND ND
Heptachlor	-	ND
Aldrin	·	ND
beta-BHC	<u> </u>	ND
delta-BHC		ND
Heptachlor epoxide	-	ND
Endosulfan I	-	ND
4,4'-DDE	-	ND
Dieldrin	0.4	ND
Endrin	•	ND
4,4'-DDD	<u> </u>	ND
Endosulfan II	•	ND
4,4'-DDT		ND
Endrin aldehyde	•	ND
Methoxychlor	-	ND
Endosulfan sulfate	•	ND
Chlordane (technical)	4.4	ND
Toxaphene	-	ND
PCBs (total)	10	ND
TAL Metals (Method 6010,7000)		
Aluminum	•	4,300
Antimony	820	ND
Arsenic	3.8	2
Barium	10,000	29
Beryllium	1.3	0.3
Cadmium	1,000	ND
Calcium	•	500
Chromium	10,000	7
Cobalt	•	4
Copper	10,000	18
Iron	•	11,000
Lead	500	55
Magnesium	-	1,700
Manganese	10,000	130
Mercury	610	ND
Nickel	10,000	7.5
Potassium	-	740
Selenium	10,000	ND
Silver	10,000	ND
Sodium	-	ND
Thallium	140	ND
i namuni	170	IND

EBS Review Item 28 EPA-Requested Piping Excavation Sample Results

ANALYTICAL PARAMETER (ppm)	Direct Exposure Criteria Industrial/Commercial	EBS28-PBFE-SS-0 12/30/97
Vanadium	10,000	10
Zinc	10,000	78

EBS Review Item 28 Septic Tanks Waste Characterization Sample Results

	DV-EBS28-ST*	DV-EB528-ST2**
ANALYTICAL PARAMETER	12/16/97	1/13/98
TPH-IR (Method 418.1), ppm	ND	840
Flashpoint (Method 1010), deg. F	>155	>170
pH, S.U.	6.2	6.2
Reactive Cyanide, ppm	ND	ND
Reactive Sulfides, ppm	ND	98
VOCs (Method 8240 or 8260), ppm		
Dichlorodifluoromethane	ND	-
Chloromethane	ND	ND
Vinyl chloride	ND	ND
Bromomethane	ND	0.009
Chloroethane	ND	ND
Trichlorofluoromethane	ND	-
1,1-Dichloroethene	ND	ND
Carbon disulfide	ND	ND
Iodomethane	ND	-
Acetone	ND	0.037
Methylene chloride	ND	ND
trans-1,2-Dichloroethene	ND	ND
1,1-Dichloroethane	ND	ND
Vinyl acetate	ND	•
2,2-Dichloropropane	ND	-
cis-1,2-Dichloroethene	ND	ND
Methyl ethyl ketone	ND	ND
Bromochloromethane	ND	
Chloroform	ND	ND
1,1,1-Trichloroethane	ND	ND
Carbon tetrachloride	ND	ND
1,1-Dichloropropene	ND	- -
Benzene	ND	ND
1,2-Dichloroethane	ND	ND
Trichloroethene	ND	ND
1,2-Dichloropropane	ND	ND
Dibromomethane	ND	-
Bromodichloromethane	ND	ND
2-Chloroethyl vinyl ether	ND	-
cis-1,3-Dichloropropene	ND	ND
4-Methyl-2-pentanone	ND	ND
Toluene	0.040	ND
trans-1,3-Dichloropropene	ND	ND
1,1,2-Trichloroethane	· ND	ND
Tetrachloroethene	ND	ND
1,3-Dichloropropane	ND	-
2-Hexanone	ND	ND
Dibromochloromethane	ND	ND
	ND ND	
1,2-Dibromoethane	0.220	0.460
Chlorobenzene	ND ND	
1,1,1,2-Tetrachloroethane	עצו	

EBS Review Item 28 Septic Tanks Waste Characterization Sample Results

	DV-EBS28-ST*	DV-EB328-ST2**
ANALYTICAL PARAMETER	12/16/97	1/13/98
Ethylbenzene	ND	ND
Xylenes (total)	0.064	0.010
Styrene	ND	ND
Bromoform	ND	ND
Isopropylbenzene	ND	-
Bromobenzene	ND	•
1,1,2,2-Tetrachloroethane	ND	ND
1,2,3-Trichloropropane	ND	-
n-Propylbenzene	ND	-
2-Chlorotoluene	ND	•
4-Chlorotoluene	ND	•
1,3,5-Trimethylbenzene	0.017	
tert-Butylbenzene	ND	-
1,2,4-Trimethylbenzene	0.060	•
sec-Butylbenzene	ND 0.062	-
1,3-Dichlorobenzene	0.062	-
4-Isopropyltoluene	ND 0.000	-
1,4-Dichlorobenzene	0.060	-
1,2-Dichlorobenzene	ND ND	•
n-Butylbenzene	ND ND	•
1,2-Dibromo-3-chloropropane	ND	-
1,2,4-Trichlorobenzene	ND	
Hexachlorobutadiene	ND	-
1,2,3-Trichlorobenzene	ND ND	-
Methyl-t-Butyl Ether	0.021	
Napthalene SVOCs (Method 8270), ppm	0.021	
Phenol	ND	ND
	ND	
bis(2-Chloroethyl)ether		ND
2-Chlorophenol	ND	ND
1,3-Dichlorobenzene	ND	ND
1,4-Dichlorobenzene	0.039	0.650 J
1,2-Dichlorobenzene	ND	ND
2-Methylphenol	ND	ND
2,2'-oxybis(1-Chloropropane)	ND	ND
4-Methylphenol	ND	ND
n-Nitroso-di-n-propylamine	ND .	ND
Hexachloroethane	ND	ND
Nitrobenzene	ND	ND
Isophorone	ND	ND
2-Nitrophenol	ND	ND
2,4-Dimethylphenol	ND	ND
bis(2-Chloroethoxy)methane	ND	ND
2,4-Dichlorophenol	ND	ND
1,2,4-Trichlorobenzene	ND	ND

EBS Revi w Item 28 Septic Tanks Waste Characterization Sample Results

Napthalene		DV-EBS28-ST*	DV-EBS28-ST2**
4-Chloroaniline	ANALYTICAL PARAMETER		
Hexachlorobutadiene	Napthalene	0.014	ND
4-Chloro-3-methylphenol ND ND 2-Methylnapthalene 0.013 0.170 J Hexachlorcyclopentadiene ND ND 2,4,6-Trichlorophenol ND ND 2,4,5-Trichlorophenol ND ND 2-Chloronapthalene ND ND ND ND ND 2-Nitroaniline ND ND Acenapthylene ND ND 3-Nitroaniline ND ND Acenapthene 0.002 J ND 3-Nitroaniline ND ND Acenapthene 0.002 J ND 4-Nitrophenol ND ND ND ND ND 4-Nitrophenol ND ND ND ND ND Pilorene 0.002 J 0.440 J 4-Chlorophenyl-phenylether ND ND 4-Chlorophenyl-phenylether ND ND 4-Bromophenyl-phenylether ND ND 4-Bromophenyl-phenylether ND	4-Chloroaniline	ND	ND
2-Methylnapthalene 0.013 0.170 J Hexachlorcyclopentadiene ND ND 2,4,6-Trichlorophenol ND ND 2,4,5-Trichlorophenol ND ND 2-Chloronapthalene ND ND 2-Nitroaniline ND ND Dimethylphthalate ND ND Acenaphthylene ND ND 2,6-Dinitrotoluene ND ND 3-Nitroaniline ND ND Acenaphthylene 0.002 J ND 2,4-Dinitrotoluene ND ND 10 ND ND ND	Hexachlorobutadiene	ND	ND
Hexachlorcyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol ND ND ND 2-Chloronapthalene ND ND ND 2-Nitroaniline ND ND ND ND ND ND ND ND ND N	4-Chloro-3-methylphenol	ND	ND
2,4,6-Trichlorophenol ND ND ND ND ND ND ND ND ND ND ND ND ND	2-Methylnapthalene	0.013	0.170 J
2,4,5-Trichlorophenol ND ND 2-Chloronapthalene ND ND 2-Nitroaniline ND ND Dimethylphthalate ND ND Acenaphthylene ND ND 2,6-Dinitrotoluene ND ND 3-Nitroaniline ND ND Acenapthene 0.002 J ND 2,4-Dinitrophenol ND ND 4-Nitrophenol ND ND Dibenzofuran ND ND 2,4-Dinitrotoluene ND ND Diethylphthalate ND ND Fluorene 0.002 J 0.440 J 4-Chlorophenyl-phenylether ND ND 4-Chlorophenyl-phenylether ND ND 4,6-Dinitro-2-methylphenol ND ND n-Nitrosodiphenylamine ND ND 4-Bromophenyl-phenylether ND ND Hexachlorobenzene ND ND Pentachlorophenol ND ND Phenanthrene	Hexachlorcyclopentadiene	ND	ND
2-Chloronapthalene ND ND ND ND ND ND ND ND ND ND ND ND ND	2,4,6-Trichlorophenol	ND	ND
2-Nitroaniline ND ND ND ND ND ND ND ND ND ND ND ND ND	2,4,5-Trichlorophenol	ND	ND
Dimethylphthalate ND ND ND ND Acenaphthylene ND ND ND ND ND ND ND ND ND ND ND ND ND	2-Chloronapthalene	ND	ND
Acenaphthylene ND ND ND ND ND ND ND ND ND ND ND ND ND	2-Nitroaniline	ND	ND
2,6-Dinitrotoluene ND ND ND ND Acenapthene 0.002 J ND ND ND ND ND ND ND ND ND ND ND ND ND	Dimethylphthalate	ND	· ND
3-Nitroaniline ND ND Acenapthene 0.002 J ND 2,4-Dinitrophenol ND ND ND Dibenzofuran ND ND ND 2,4-Dinitrotoluene ND ND ND Diethylphthalate ND ND Fluorene 0.002 J 0.440 J 4-Chlorophenyl-phenylether ND ND 4-Nitroaniline ND ND ND 1-Nitrosodiphenyl-phenylether ND ND Hexachlorobenzene ND ND Pentachlorophenol ND ND Phenanthrene 0.003 J 1.50 Anthracene ND ND Phenanthrene ND ND Phenanthrene ND ND Carbazole ND ND Fluoranthene ND ND Robert ND ND ND Robert ND ND ND Robert ND ND ND Robert ND ND ND Robert ND ND ND Robert ND ND ND Robert ND ND ND Robert ND ND ND Robert ND ND ND Robert ND ND ND Robert ND ND ND Robert ND ND ND ND Robert ND ND ND ND Robert ND ND ND ND Robert ND ND ND ND ND Robert ND ND ND ND ND ND ND ND ND ND ND ND ND	Acenaphthylene	ND	ND
Acenapthene 0.002 J ND 2,4-Dinitrophenol ND ND 4-Nitrophenol ND ND Dibenzofuran ND ND Diethylphthalate ND ND Fluorene 0.002 J 0.440 J 4-Chlorophenyl-phenylether ND ND A-Nitrosodiphenyl-phenylether ND ND ND ND ND ND ND ND ND ND ND ND ND ND N		ND	ND
2,4-Dinitrophenol ND ND ND ND ND Dibenzofuran ND ND ND ND ND ND ND ND ND ND ND ND ND	3-Nitroaniline	ND	ND
4-NitrophenolNDNDDibenzofuranNDND2,4-DinitrotolueneNDNDDiethylphthalateNDNDFluorene0.002 J0.440 J4-Chlorophenyl-phenyletherNDND4-NitroanilineNDND4,6-Dinitro-2-methylphenolNDNDn-NitrosodiphenylamineNDND4-Bromophenyl-phenyletherNDNDHexachlorobenzeneNDNDPentachlorophenolNDNDPhenanthrene0.003 J1.50AnthraceneND0.620 JDi-n-butylphthalateNDNDCarbazoleNDNDFluorantheneND3.50ButylbenzylphthalateNDNDBenzo(a)anthraceneND1.30ChryseneND1.603,3'-DichlorobenzidineNDNDbis(2-Ethylhexyl)phthalateNDNDBenzo(b)fluorantheneNDNDBenzo(b)fluorantheneNDND	Acenapthene	0.002 J	ND
DibenzofuranNDND2,4-DinitrotolueneNDNDDiethylphthalateNDNDFluorene0.002 J0.440 J4-Chlorophenyl-phenyletherNDND4-NitroanilineNDND4,6-Dinitro-2-methylphenolNDNDn-NitrosodiphenylamineNDND4-Bromophenyl-phenyletherNDNDHexachlorobenzeneNDNDPentachlorophenolNDNDPhenanthrene0.003 J1.50AnthraceneND0.620 JDi-n-butylphthalateNDNDCarbazoleNDNDFluorantheneND4.00PyreneND3.50ButylbenzylphthalateNDNDBenzo(a)anthraceneND1.30ChryseneND1.603,3'-DichlorobenzidineNDNDbis(2-Ethylhexyl)phthalateNDNDBenzo(b)fluorantheneNDNDBenzo(b)fluorantheneNDND	2,4-Dinitrophenol	ND	ND
2,4-DinitrotolueneNDNDDiethylphthalateNDNDFluorene0.002 J0.440 J4-Chlorophenyl-phenyletherNDND4-NitroanilineNDND4-NitrosodiphenyletherNDNDn-NitrosodiphenylamineNDND4-Bromophenyl-phenyletherNDNDHexachlorobenzeneNDNDPentachlorophenolNDNDPhenanthrene0.003 J1.50AnthraceneND0.620 JDi-n-butylphthalateNDNDCarbazoleNDNDFluorantheneND4.00PyreneND3.50ButylbenzylphthalateNDNDBenzo(a)anthraceneND1.30ChryseneND1.603,3'-DichlorobenzidineNDNDbis(2-Ethylhexyl)phthalateNDNDDi-n-octylphthalateNDNDBenzo(b)fluorantheneNDNDBenzo(b)fluorantheneNDND	4-Nitrophenol	ND	ND
DiethylphthalateNDNDFluorene0.002 J0.440 J4-Chlorophenyl-phenyletherNDND4-NitroanilineNDND4,6-Dinitro-2-methylphenolNDNDn-NitrosodiphenylamineNDNDNDNDND4-Bromophenyl-phenyletherNDNDHexachlorobenzeneNDNDPentachlorophenolNDNDPhenanthrene0.003 J1.50AnthraceneND0.620 JDi-n-butylphthalateNDNDCarbazoleNDNDFluorantheneND4.00PyreneND3.50ButylbenzylphthalateNDNDBenzo(a)anthraceneND1.30ChryseneND1.603,3'-DichlorobenzidineNDNDbis(2-Ethylhexyl)phthalateNDNDDi-n-octylphthalateNDNDBenzo(b)fluorantheneNDND	Dibenzofuran	ND	ND
Fluorene 0.002 J 0.440 J 4-Chlorophenyl-phenylether ND ND 4-Nitroaniline ND ND ND 4,6-Dinitro-2-methylphenol ND ND ND n-Nitrosodiphenylamine ND ND ND 4-Bromophenyl-phenylether ND ND ND Hexachlorobenzene ND ND ND Pentachlorophenol ND ND ND Phenanthrene 0.003 J 1.50 Anthracene ND 0.620 J Di-n-butylphthalate ND ND Carbazole ND ND ND Fluoranthene ND ND ND Fluoranthene ND A.00 Pyrene ND 3.50 Butylbenzylphthalate ND ND ND Benzo(a)anthracene ND 1.30 Chrysene ND 1.60 3,3'-Dichlorobenzidine ND ND ND bis(2-Ethylhexyl)phthalate ND ND ND Benzo(b)fluoranthene ND ND ND Benzo(b)fluoranthene ND ND ND	2,4-Dinitrotoluene	ND	ND
4-Chlorophenyl-phenylether ND ND 4-Nitroaniline ND ND ND 14,6-Dinitro-2-methylphenol ND ND ND ND ND ND ND ND ND ND ND ND ND ND N	Diethylphthalate	ND	ND
4-Nitroaniline ND ND ND ND ND ND ND ND ND ND ND ND ND	Fluorene		0.440 J
4,6-Dinitro-2-methylphenolNDNDn-NitrosodiphenylamineNDND4-Bromophenyl-phenyletherNDNDHexachlorobenzeneNDNDPentachlorophenolNDNDPhenanthrene0.003 J1.50AnthraceneND0.620 JDi-n-butylphthalateNDNDCarbazoleNDNDFluorantheneND4.00PyreneND3.50ButylbenzylphthalateNDNDBenzo(a)anthraceneND1.30ChryseneND1.603,3'-DichlorobenzidineNDNDbis(2-Ethylhexyl)phthalateND0.570 JDi-n-octylphthalateNDNDBenzo(b)fluorantheneND1.50			ND
n-Nitrosodiphenylamine 4-Bromophenyl-phenylether ND ND ND ND ND ND Pentachlorobenzene ND ND ND ND ND Phenanthrene 0.003 J 1.50 Anthracene ND ND ND ND ND ND ND ND ND ND ND ND ND		,	
4-Bromophenyl-phenyletherNDNDHexachlorobenzeneNDNDPentachlorophenolNDNDPhenanthrene0.003 J1.50AnthraceneND0.620 JDi-n-butylphthalateNDNDCarbazoleNDNDFluorantheneND4.00PyreneND3.50ButylbenzylphthalateNDNDBenzo(a)anthraceneND1.30ChryseneND1.603,3'-DichlorobenzidineNDNDbis(2-Ethylhexyl)phthalateND0.570 JDi-n-octylphthalateNDNDBenzo(b)fluorantheneND1.50			ND
Hexachlorobenzene ND ND Pentachlorophenol ND ND Phenanthrene 0.003 J 1.50 Anthracene ND 0.620 J Di-n-butylphthalate ND ND Carbazole ND ND Fluoranthene ND 4.00 Pyrene ND 3.50 Butylbenzylphthalate ND ND Benzo(a)anthracene ND 1.30 Chrysene ND 1.60 3,3'-Dichlorobenzidine ND ND bis(2-Ethylhexyl)phthalate ND ND Benzo(b)fluoranthene ND ND Benzo(b)fluoranthene ND ND			ND
Pentachlorophenol ND ND Phenanthrene 0.003 J 1.50 Anthracene ND 0.620 J Di-n-butylphthalate ND ND Carbazole ND ND Fluoranthene ND 4.00 Pyrene ND 3.50 Butylbenzylphthalate ND ND Benzo(a)anthracene ND 1.30 Chrysene ND 1.60 3,3'-Dichlorobenzidine ND ND bis(2-Ethylhexyl)phthalate ND ND Benzo(b)fluoranthene ND ND Benzo(b)fluoranthene ND ND			ND
Phenanthrene0.003 J1.50AnthraceneND0.620 JDi-n-butylphthalateNDNDCarbazoleNDNDFluorantheneND4.00PyreneND3.50ButylbenzylphthalateNDNDBenzo(a)anthraceneND1.30ChryseneND1.603,3'-DichlorobenzidineNDNDbis(2-Ethylhexyl)phthalateND0.570 JDi-n-octylphthalateNDNDBenzo(b)fluorantheneND1.50			ND
Anthracene ND 0.620 J Di-n-butylphthalate ND ND Carbazole ND ND Fluoranthene ND 4.00 Pyrene ND 3.50 Butylbenzylphthalate ND ND Benzo(a)anthracene ND 1.30 Chrysene ND 1.60 3,3'-Dichlorobenzidine ND ND bis(2-Ethylhexyl)phthalate ND ND Di-n-octylphthalate ND ND Benzo(b)fluoranthene ND 1.50			ND
Di-n-butylphthalateNDNDCarbazoleNDNDFluorantheneND4.00PyreneND3.50ButylbenzylphthalateNDNDBenzo(a)anthraceneND1.30ChryseneND1.603,3'-DichlorobenzidineNDNDbis(2-Ethylhexyl)phthalateND0.570 JDi-n-octylphthalateNDNDBenzo(b)fluorantheneND1.50	Phenanthrene		1.50
CarbazoleNDNDFluorantheneND4.00PyreneND3.50ButylbenzylphthalateNDNDBenzo(a)anthraceneND1.30ChryseneND1.603,3'-DichlorobenzidineNDNDbis(2-Ethylhexyl)phthalateND0.570 JDi-n-octylphthalateNDNDBenzo(b)fluorantheneND1.50			0.620 J
Fluoranthene ND 4.00 Pyrene ND 3.50 Butylbenzylphthalate ND ND Benzo(a)anthracene ND 1.30 Chrysene ND 1.60 3,3'-Dichlorobenzidine ND ND bis(2-Ethylhexyl)phthalate ND 0.570 J Di-n-octylphthalate ND ND Benzo(b)fluoranthene ND 1.50	<u> </u>		ND
Pyrene ND 3.50 Butylbenzylphthalate ND ND Benzo(a)anthracene ND 1.30 Chrysene ND 1.60 3,3'-Dichlorobenzidine ND ND bis(2-Ethylhexyl)phthalate ND 0.570 J Di-n-octylphthalate ND ND Benzo(b)fluoranthene ND 1.50	Carbazole	ND	ND
Butylbenzylphthalate ND ND Benzo(a)anthracene ND 1.30 Chrysene ND 1.60 3,3'-Dichlorobenzidine ND ND bis(2-Ethylhexyl)phthalate ND 0.570 J Di-n-octylphthalate ND ND Benzo(b)fluoranthene ND 1.50	Fluoranthene	ND ND	4.00
Benzo(a)anthracene ND 1.30 Chrysene ND 1.60 3,3'-Dichlorobenzidine ND ND bis(2-Ethylhexyl)phthalate ND 0.570 J Di-n-octylphthalate ND ND Benzo(b)fluoranthene ND 1.50			3.50
ChryseneND1.603,3'-DichlorobenzidineNDNDbis(2-Ethylhexyl)phthalateND0.570 JDi-n-octylphthalateNDNDBenzo(b)fluorantheneND1.50	<u> </u>	ND	ND
3,3'-Dichlorobenzidine ND ND bis(2-Ethylhexyl)phthalate ND 0.570 J Di-n-octylphthalate ND ND Benzo(b)fluoranthene ND 1.50	Benzo(a)anthracene	ND	1.30
bis(2-Ethylhexyl)phthalate ND 0.570 J Di-n-octylphthalate ND ND Benzo(b)fluoranthene ND 1.50	Chrysene	ND	1.60
Di-n-octylphthalateNDNDBenzo(b)fluorantheneND1.50	3,3'-Dichlorobenzidine	ND	ND
Benzo(b)fluoranthene ND 1.50	bis(2-Ethylhexyl)phthalate	ND	0.570 J
Benzo(b)fluoranthene ND 1.50	Di-n-octylphthalate	ND	ND
	Benzo(b)fluoranthene	ND	
	Benzo(k)fluoranthene	ND	0.620 J

EBS Review Item 28
Septic Tanks Waste Characterization Sample Results

	BV-EBS28-ST*	DV-EB528-ST29*
ANALYTICAL PARAMETER	12/16/97	1/13/98
Benzo(a)pyrene	ND	0.850 J
Indeno(1,2,3-cd)pyrene	ND	0.230 J
Dibenzo(a,h)anthracene	ND	ND
Benzo(g,h,i)perylene	ND	0.240 J
PEST/PCBs (Method 8080), ppm		
alpha-BHC	ND	ND
gamma-BHC	ND	ND
Heptachlor	ND	ND
Aldrin	ND	ND
beta-BHC	ND	ND
delta-BHC	ND	ND
Heptachlor epoxide	ND	ND
Endosulfan I	ND	ND
4,4'-DDE	ND	ND
Dieldrin	ND	ND
Endrin	ND	ND
4,4'-DDD	ND	ND
Endosulfan II	ND	ND
4,4'-DDT	ND	ND
Endrin aldehyde	ND	ND
Methoxychlor	ND	ND
Endosulfan sulfate	ND	ND
Endrin ketone	-	ND
Chlordane	ND	ND
alpha-Chlordane	•	ND
gamma-Chlordane	-	ND
Toxaphene	ND	ND
Aroclor-1016	ND	ND
Aroclor-1221	ND	ND
Aroclor-1232	ND	ND
Aroclor-1242	ND	ND
Aroclor-1248	ND	ND
Aroclor-1254	ND	ND
Aroclor-1260	ND	ND
Total Metals (Method 6010,7000), ppn	n	
Aluminum	-	6,100
Antimony	-	ND
Arsenic	ND	3
Barium	0.01	61
Beryllium	-	0.4
	ND	
Cadmium Calcium	ND -	ND 960

EBS Review Item 28 Septic Tanks Waste Characterization Sample Results

ANALYTICAL PARAMETER	BV-EBS28-ST* 12/16/97	DV-EBS28-ST2** 1/13/98
Chromium	ND	15
Cobalt	-	5
Copper	-	33
Iron		20,000
Lead	ND	35
Magnesium	-	1,400
Manganese	•	240
Mercury	ND	ND
Nickel	•	14
Potassium	-	840
Selenium	ND	ND
Silver	ND	ND
Sodium	•	ND
Thallium		ND
Vanadium	•	14
Zinc	-	360

^{*} Aqueous waste.

^{**} Septic tank solids.

EBS Review Item 28 Soil Waste Characterization Sample Results

	EBS28-WC.1	EBS28-WC-2	ERSYSEVICES	BRS28-W/C/A
ANALYTICAL PARAMETER	12/12/97	12/15/97	12/15/97	12/15/97
TPH-IR (Method 418.1), ppm	140	3,100	180	470
Flashpoint (Method 1010), deg. F	>150	-	•	-
pH, S.U.	6.7	•	-	
Reactive Cyanide, ppm	ND	-	•	_
Reactive Sulfides, ppm	ND	•	•	-
VOCs (Method 8240), ppm		٠		
Chloromethane	ND		-	-
Vinyl chloride	ND	•	-	-
Bromomethane	ND	-	-	-
Chloroethane	ND	-	•	-
1,1-Dichloroethene	ND	•	•	-
Acetone	0.018	-	-	-
Carbon disulfide	ND	-		
Methylene chloride	0.012	-	-	•
trans-1,2-Dichloroethene	ND	-		•
1,1-Dichloroethane	ND		-	-
2-Butanone	ND		-	-
cis-1,2-Dichloroethene	ND	-	-	
Chloroform	ND		-	-
1,1,1-Trichloroethane	ND	-	-	-
Carbon tetrachloride	ND	-	-	<u> </u>
1,2-Dichloroethane	ND ND	-	-	-
Benzene	ND ND	-	•	
Trichloroethene	ND ND		-	
1,2-Dichloropropane	ND	<u> </u>		
Bromodichloromethane cis-1,3-Dichloropropene	ND			-
4-Methyl-2-pentanone	ND			
Toluene	ND			
trans-1,3-Dichloropropene	ND			
1,1,2-Trichloroethane	ND	_		
Tetrachloroethene	ND			
2-Hexanone	ND	_		
Dibromochloromethane	ND	, .		
Chlorobenzene	ND	-	_	
Ethylbenzene	ND	<u> </u>	-	
Xylenes (total)	ND	-		
Styrene	ND	-	-	-
Bromoform	ND	-	•	-
1,1,2-Tetrachloroethane	ND		-	
SVOCs (Method 8270), ppm				
Phenol	ND	-		
bis(2-Chloroethyl)ether	ND	-	-	
2-Chlorophenol	ND			
1,3-Dichlorobenzene	ND	-		_
1,4-Dichlorobenzene	ND			
1, TO ICHIOIOUCHZCHC	110			-

EBS Review Item 28 Soil Waste Characterization Sample Results

	EBS28:WC:1	EBS29-WC-2	EBS28-W.G.Z	EBS28-W.
ANALYTICAL PARAMETER	12/12/97	12/15/97	12/15/97	12/15/97
1,2-Dichlorobenzene	ND	-	-	-
2-Methylphenol	ND	-	-	-
2,2'-oxybis(1-Chloropropane)	ND	-	-	-
4-Methylphenol	ND	-	-	-
n-Nitroso-di-n-propylamine	ND	-	-	-
Hexachloroethane	ND	-	-	•
Nitrobenzene	ND	_	-	-
Isophorone	ND	_	-	-
2-Nitrophenol	ND	-	-	-
2,4-Dimethylphenol	ND	-	•	-
bis(2-Chloroethoxy)methane	ND	-	-	-
2,4-Dichlorophenol	ND	-	-	-
1,2,4-Trichlorobenzene	ND	•	-	-
Napthalene	ND	-	-	•
4-Chloroaniline	ND	-	-	_
Hexachlorobutadiene	ND	-	_	-
4-Chloro-3-methylphenol	ND	•	-	•
2-Methylnapthalene	ND	•	-	•
Hexachlorocyclopentadiene	ND	-	-	•
2,4,6-Trichlorophenol	ND	-	-	•
2,4,5-Trichlorophenol	ND	•	· -	-
2-Chloronapthalene	ND	•	-	-
2-Nitroaniline	ND		<u> </u>	-
Dimethylphthalate	ND	•		
Acenaphthylene	ND	•	<u>-</u>	-
2,6-Dinitrotoluene	ND	-		-
3-Nitroaniline	ND	-	-	•
Acenapthene	ND ND	-	-	-
2,4-Dinitrophenol	ND		-	-
4-Nitrophenol Dibenzofuran	ND	-		-
2,4-Dinitrotoluene	ND		-	-
	ND ND	-	-	
Diethylphthalate Fluorene	ND			
4-Chlorophenyl-phenylether	ND			-
4-Nitroaniline	ND	-	-	
4,6-Dinitro-2-methylphenol	ND .	-		-
n-Nitrosodiphenylamine	ND	-	-	-
4-Bromophenyl-phenylether	ND	-	-	-
Hexachlorobenzene	ND	<u> </u>	-	-
Pentachlorophenol	ND	-		•
Phenanthrene	0.086 J			-

EBS Review Item 28 Soil Waste Characterization Sample Results

	EBS28-WC:1	EBS28-WC-2	EBS28-WC-3	EBS28-WC-4
ANALYTICAL PARAMETER	12/12/97	12/15/97	12/15/97	12/15/97
Anthracene	ND	-	-	-
Di-n-butylphthalate	ND	-	-	-
Carbazole	ND	-	-	
Fluoranthene	0.150 J	_	-	
Pyrene	0.110 J	-	-	-
Butylbenzylphthalate	ND	-	-	•
Benzo(a)anthracene	0.089 J	-		-
Chrysene	0.100 J	-	•	_
3,3'-Dichlorobenzidine	ND	-	•	
bis(2-Ethylhexyl)phthalate	ND	-	•	-
Di-n-octylphthalate	ND	-	•	-
Benzo(b)fluoranthene	0.140 J	-	-	
Benzo(k)fluoranthene	0.062 J	-	-	
Benzo(a)pyrene	0.088 J	-	-	•
Indeno(1,2,3-cd)pyrene	ND:	-	-	
Dibenzo(a,h)anthracene	ND .	-	-	-
Benzo(g,h,i)perylene	ND	-	-	-
PCBs (Method 8080), ppm				
Aroclor-1016	ND	<u>-</u>	-	-
Aroclor-1221	ND	- ,	-	-
Aroclor-1232	ND	-	-	-
Aroclor-1242	ND	-	•	-
Aroclor-1248	ND	-	-	-
Aroclor-1254	ND		•	-
Aroclor-1260	ND	-	-	-
RCRA 8 Metals (Method 6010, 7000)), ppm		·	
Arsenic	2	-	<u>.</u>	-
Barium	22	-	-	-
Cadmium	ND	-		-
Chromium	5	-	-	-
Lead	19	-	-	-
Mercury	ND	-	-	-
Selenium	ND	-	-	-
Silver	ND	-	-	
TCLP Metals (Method 1311/6010),	mg/L			
Lead	0.02	-	-	-

Appendix A-3

UST Remedial Investigation Report, December 1994 UST Location 68, Area E (Review Item 85) Figures, Boring Logs, and Analytical Data Summary Tables

-{

1				AND A CONTRACT OF THE PARTY OF
ı	MODER (TO 178 -YST has	1700 DAVICONE RI	MARCH ED1-5. La March	2000 (A-10(1))
1	DATE STANTED- 7-11-014	INCRUMATION LEHICAL	LOSSED BY: K. Jalkit	Girmanar 11 M
1			,	. 1
•	DATE CONTETED	BEARDIN- N.M.	CHECKED BY:	_TOTAL DESTINATION

ı		Sure.				REMARKS CH	2	
	E TE	TYPE-	GLOUS PER CO	PEL	ARC.	AGVANCE OF	SEATHIC LOS	SOIL AND ROCK DESCRIPTIONS
Ċ			·		•			No samples orzi
١				•			-	
. 2		K	9-10		•	68-MW1-5B-	-	5-1A (8in) SIVY SAND. Fine said poorly
2		51	12-10	24	18	6)04 . 1617 hrs		S-1 B (10 in) SAND, to Sist Fine to med sand.
4		52	1-2	, ,	•	7 MOG PAN-87	÷	board abover; been in somety. even proce
5		7,7	みる	124	15	1018 hrs 4504		SZA (Din) SAND, = 511+ to gravel-
د رخ	•	· in		1211	<u> </u>	68-wm-28-		Similar to 2-18 (200)
7 Ý		(,,	4-5	24	30	DSS pasola	بــــ	5-28 (51m) SANDI + TINE James poorly
9		5-9	4.5	24	14	0810 0810	1	grabel; stronfied; redduch brown (SP)
, io			177	<u></u>	-	(8-ME)-38	-	5-3A (9in) Story (AND cone, sit fine the order of process of merce
11	•	5-5	14-5	24	13	ic12	N.	tr. med sand poorly andred in the subrounded grand up to sy "in length - gray brown (sm)
12			11 -		1	1575 hrs. 1876	· 	5-3B (9in) SAND, trisit. Flor sand
13	.	5-6	1: 12-9 1 14-5	4 24	74	1214	~	4: (car's sand, rocking mudid; 19196 (92).
[4	· ,	.,	;	.•	<u>'</u>	10 - 10 1- SE		5-3C (7in) SAND to sout
15		5.7	V 182	3:24	عرا	1416		looks haded light grey-prous (sp)
1	,		34-7	· • :		68-musi-18		Schrifting show tr. sit Flor cand
i	7 .	7-8	16-7	Dr	1/24	1077 hrs	; 275A	Cualizad come to cut Fourand
1	ے <u>ز</u> لا	(-A	VILS		+	68-mui 18	:	greet promu beentis daged (26)
1	اد): اد):		170	1	$ S_n $	1820	2000	
		i			NOTI	<u> </u>	8in	de la lemicana

HSA Y"4" ID 8" OD

Continuous soil soliging 2-20'
2' mc which & " ID

Sport

las Henrispice

7-11-44 1 08 2 MONUTHO- IAUS

MORES CTY 134	Merror Diville RI	CONTRACTO EDITS. LAW	ATUNE VK-AYILL
DATE STARTED 7-11-94	DICE BUSTONE VINTERCE		- GROBEST NA
DATE CONSETED	BEARDIS ()M	CHECKED BY:	TOTAL COME LO'

		77	, 					
	-	STATE				REMARKS ON	•	
E E	E	TYPE-	PER C	PER	REC.	AGYANCE OF BORDING	CRAPTIC LOS	SOR, AND ROCK DESCRIPTIONS
				•			•	5-5 (Bin) SAND, some sitt. Fine sound poorly graded Shortified Grey-brown (SM)
								5-6 (24min) SIUTY CAND. Fire cand. portey graded; shortfied/bedsed bourn Interbedia cy silf (1"thicks) A (SM)
,	• • •	· ;	<u> </u>		. 			(-7 ((U.E)) SAND to SINT Horrsand Joodly graded Brown (SP)
								5.7P(1017) Gravelly SINDSAND Floring and Gravelly SINDSAND Floring Grand roanse subsounced grand up to 15 in length. Gravelly Grand in length, fine chapter brown (GM).
	•			•				5-7 (24in) Gravelly surty sand-rimlar to 5-78 (EM) Industrial in Sitty fine sand - 4in thick-gray lose (EM) SM)
			:			· ·		5-9 (20 in.) SAND tr. Sit Five sand tr. and sand poorly graded, myenbod 17 silky five sand (sm) fredt Metterny at base is split herrer (SPSM)
	· · · · ·					: : :		Set well log. 10-4.5
		ı	:	:	; 			Simewishon 125-10

LEGBO:

TYPE-NO - Type of Legge

C - Aces care semple

C - Aces care semple

Type 10° to error

Linke 10° to error

A 101 Datter sembles:

VEN - toverapes studen of

SCC Page 1
HSA Y'M" ID 7" OI)

backful by bent jupil

PAGE ZOF Z

VERBURDEN WELL CONSTRUCTION LO	G HALLIBURTON NUS ENVIRO	MENTAL CORPORATIO
ROJECT: (TO 178 CIT T	TOWN KACTION PAGE: 1 OF 1	
ROJECT LOCATION DALYCUITE R.	<u> </u>	
TIENT: NAVEAC ENGLOSS	BORING NO: WHI 68-	MWI
CONTRACTOR EDI	DRILLER S. CANDOCK BORING LOCATION UST (is Area E
OGGED BY: K JULIKUT	DATE: 7-11-94 PROJECT NO: 1905	CTO 178
HECKEO BY:	DATE:	
ELEVATION TOP OF PROTECTIVE LASINS A M T		
	LENGTH OF PROTECTIVE CASING OR ROAD BOY	
ELEVATION TOP OF A A A A	LENGTH OF RISER PIPE ABOYE GROUND	E10.58 FT
	SURFACE Below	
ROUND LEVATION (V/)		
	TYPE OF SURFACE SEAL	Coment
	TYPE OF SURFACE SEAL	
	TYPE OF PROTECTIVE CASING	CartAkeminen
	LO. OF PROTECTIVE CASING	tin
	DEPTH BOTTOM OF SURFACE SEAL	10 in
R	DEPTH BOTTOM OF CASING	
	DEPTH BOTTOM OF SAND DRAIN	_2FT
Senera	TYPE OF RISER PIPE	Stief 40 poic
on conditions in the conditions	LO. AND O.D. OF RISER PIPE	प्राप्त
Seneral social conditions (not to scale)	TYPE OF BACKFILL AROUND RISER PIPE	See Seak
70,3	THE OF BROKE AROUND RISER FIFE	
	DEPTH TOP OF SEAL	2.FT
,	TYPE OF SEAL	BEAT CHUPS
·		
	DEPTH BOTTOM OF SEAL	3 FT
<u> </u>	OIAMETER OF BOREHOLE OEPTH TOP OF PERVIOUS SECTION	H ET
		Sind WE PIE
	TYPE OF PERVIOUS SECTION	2/2:12"
1 contractor	LO ANG O.D. OF PERVIOUS SECTION	
	TYPE OF OPENINGS	G.CIC Slots
į.	TYPE OF BACKFILL AROUND PERVIOUS SECTION	Silipa land
	SECTION	
<u> </u>		10 FT
	DEPTH BOTTOM OF PERVIOUS SECTION	<u> </u>
	DEPTH OF BACKFILL Same Cushion	10.5
<u> </u>	O O O O TYPE OF BACKFILL END OF BORING	Bent Chas Hant
	, Comme	

SORDIA LOG. N'ville 121 DENTE EDI-S. Laikard DATE STARTED 7-11-04 NO BIATION VENTUAL OSSER BY K Jalleut SLOWE | PERC | BEEL ACTANCE OF SOIL AND ROCK DESCRIPTIONS PER S' In. NO SAMPLES 0-21 68-81-58-S-1 (24th) SAND to sit. Fire sand, 24/24 5-1.1 0204 450 med sand, poorky graded; root months. CEYT INS. IM s-型(gim) Similiantos-1 学·例一5日 0406 yeus 24 14 0855 has JOG . 5-28 (Zin) SAND, to 511+ Find sand transa sand poorly graded. Brown. 68-B1-1B 24/17 **3000** WET (SF) Odos pac ? (g fr. gravek 68-81-36. 5-3 (17in) shub tr. sint a find sound 5-41/19-10 trined cami poorly muded CSIC of the pieces fine extraction of the control of the process of the control of the COZO MAC ial CX-61-515 KIN S-4 (14) SAND to suit time sound trived sound poetly graded Threffind of clear GIELL-LADUCION ij. 56 seiler and I for spaced) 2 thitle Brown fine said cy hid withing or faining under silf (x). (17-5m) · 5-7 SSA (16 in) SAND to SIH, to grow in theto red sand forth, proded coarsi granted - subrounded 5-2: (F. (SY) to grant الالتباق لأواح إراغات bross,) (Fin) SAND the sit For Carend will graded; hire whover in mare up to 1411 in Chropth (Sw) Rather 20 : कित् । ३" । विश्व HSA 414" ID 8".0 D 一定 完 21 6 soil sompling sand to to save to Z"ID ly 2' Samples to sances

DIVINE KT FOLL LANACE Venture lin MATE COMPLETED GRAPHIC LOS MEL ACTANGE OF SOIL AND ROCK DESCRIPTION PER SP forgravel S-1 (mm) SHND, some sont Fine same 68-62-5B Strates; coarse grand up to fu" in line sobrevious grand of fully "in with crey brown (5m) C204 24 11 7-11 1313ms. 100-200 18m 5-2 (Vin) SIUTY SAND FILE SAND POORLY Graded Grey-brown (SM) Noch fragnesia - longed in Spoor. 18-12 -1B-CHOP ISOPEN 10 1321 hvs Gunama Hot (8-62-56-53A (Fin), SILTY SAND FINE COME TO ALL Con CHOR come pering operated Gray-brown (SM) 12-13/24 1329 Mrs 68-62-59 C. 38 (ISIN) SHOD STATE SIA FAT COM 1334 NA2 640x pointy spaded Brown C8-134-16trisat. 10 5.4 (Din) STOPE SANDA Fine some tr.

ned (case sand. Red-brown stain)

poorty graded (Sta) 1012 1340 MIS 9.5 1 S-5A (Gin) SAND & to SIX+ SIMILAN
to = 4 keddish brown ISP) 13 SSB(18in) SKTG SANY FIRE Jand 15 Dark grey-stratitud; ican graded 17-EB @ 12' Backfilled in bond storm + sand to 2"; sand to a (4 10 Jan Hadipace waiting Cont. sampling, HJA 41/4" 8"CD 2'increants 2"ID groom

CT 178, NCBC DAVISVILLE, DAVISVILLE, RHODE ISLAND RECRA ENVIRONMENTAL, INC.

CLIENT ID: LABORATORY ID:		68B1SB040 64031409	8	68B1SB101: B4031410	2	68MW1SB0204 B4031411	
Inorganic soils (MG/KG)				-		•	
ANALYTE	ROL		,				
TOTAL PETROLEUM HYDROCARBONS	12.5	12.5	U	12.5	U	65	
% SOLIDS:		82 N	<u>` </u>	83.0		99 0	-

CTO 178, NCBC DAVISVILLE, DAVISVILLE, RHODE ISLAND RECRA ENVIRONMENTAL, INC.

CLIENT ID: 68MW1SB0810 68B2SB0204 68B2SB0810 68B2SBDUP4 LABORATORY ID: B4031412 B4031414 B4031413 B4031417 INORGANIC S ILS (MG/KG) ANALYTE RDL TOTAL PETROLEUM HYDROCARBONS 12.5 12.5 U 30 12.5 U 18 % SOLIDS: 83.0 80.0 76.0

78.0

Appendix A-4

Review Item 85 (UST Southwest of Building E-107) Boring Logs and Analytical Data Summary Table

											Job. No.	Client [*]	NORDIV	, NAVFAC	Location:	EBS 85	
LOG OF SOIL BORING Coordinates: Surptice Edination: Well Ripse Elevation: Well Ripse Elevation: Well Ripse Elevation: Surptice Edination Spring Filip Blown State Fi								,								outh of E-1	107
Continuous Con	Willia.		A	and T	echno	olgy, I	nc.								Boring No.		
Sampling Method: 2" and 3" OD spath-barrel sampler (when by 140-b) sammer is falling 30" Well Riser Elevation Well Riser Elevation Type Driverish Dom Samper is Dom Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Street. Type Driverish Dom Samper is Dom Dom Dom Dom Dom Dom Dom Dom Dom Dom			3			505						itea) split s	poon sample	95		C 0E CD	104
Surface Elevation Control Co				LOG O	r SQIL	. BOKI	NG				continuous.	·			E 6	3-03-30	-01
Surface Elevation Control Co) Condin	natee:									Sampling Meth	od: 2" and	3" OD split-b	arrei			
Defining Marker Levels			n·			·			-							Sheet 1 of	1
Date: D4/29/89 Time: D4/29/89 Times D4/29/89 D4/29/8	_								-								
Solid Description Solid	• • • • • • • • • • • • • • • • • • • •								-		_		-	05:00 PM	04/29/96	_	1
Type Price											Surface Conditi	ions:	Grass		03:40 PM		05:00 PM
Record (1) Alone 6" 7 7 7 7 7 7 7 7 7	Sample	Inches	Opth	Samp #	PID	Blows	Strat.	Ft		uscs			<u>-</u>				
3	Type	Driven/In	. Csg.	/ depth	(ppm)	per	Unit	bgs		Log	}				 .		
SS		Recvrd			Above bk		L	<u> </u>									
14-20° Sithy fine sand, dark clive gray, motst. 14-20° Sithy fine sand, fanc pies size grave, trace note and brigs, dark clive gray to yellowish-orange at 16°, moist to wet at 10°. 14		1	I	1			•	0					e angular an	d rounded gra	vel to 2", roo	tlets in top 3°	
S	SS	20	9 0	0-2	3.9		l	١.		ĺ			rk aliva arav	int			
3		ł	1		t		l	l '			14-20 Sity in	e sanu, ua	ik olive gray,	moist.			
SS	2"	24	 	5.2			ĺ	١,			Silty fine sand	trace peas	size grave to	ace mots and	twice dark c	dive arey to v	ellowie b
S			۱.	:	19.5		ł	^						000.000	tings, dark t	nive gray to y	CIIOWISTA
Sample interval Sample interva		- "	+				Ì	3									
SS 12 0 4-6 1.6 7 11 15 5		Į.					1	•									
11		24	1	S-3		5	1	4			Silty fine sand,	yellowish-c	orange to dar	rk gray at 9", w	ret.		
Sity fine sand, yellowish-orange and olive gray, wet. Sity fine sand, yellowish-orange and olive gray Sity fine sand, yellowish-orange and olive gray Sity fine sand, yellowish-orange and oli	SS	12	2 0	4-6	1.6		I	l									
Silty fine sand, yellowish-crange and drive gray, wet.					ł		{	5	10.23		<u> </u>						
SS 12 0 6-8 2.0 3 11 13 7		<u></u>	 		<u> </u>			_	6		0.00						
NOTES: Sample interval submitted for analysis. NR - No reading NA - Not applicable Pilla Screen/Riser: NA Screen Interval: NA Sandpack NA Grout NA				1		<u></u>		6	30.5		Sity tine sand,	yellowish-c	orange and o	live gray, wet.			
SS 24 13 0 8-10 2.8 20 22 22 22 22 10	SS	12	21 0	6-8	2.0		ł	,		ł	 						
As above. As a		ļ	1		ļ			l '									
SS 13 0 8-10 2.8 20 9 9 22 10		24	+	S-5	 		1	В			As above.						
NOTES: Sample interval Sample interval submitted for analysis. NR - No reading NA - Not applicable Driller: Phil Thomsbury Phil Thomsbury Phil Thomsbury	SS		3 0	8-10	2.8	20	1										
NOTES: Sample interval Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Driller: Phil Thomsbury Phil Thomsbury Phil Thomsbury Ph			1			22	1	9	1000						7		
NOTES: Sample interval Sample interval submitted for analysis. NR - No reading NA - Not applicable Driller: Phil Thomsbury Phil Thomsbury			1		<u> </u>	22		1		ł	<u></u>						
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA		1	1	1	1		l	10	⊢	1				· · · · · · · · · · · · · · · · · · ·			
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA	<u> </u>	├ ──	╁	}	 -		i	l	-	ì	<u> </u>		···		· · · · · · · · · · · · · · · · · · ·		
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA		l	1	Į.		-	ł		-	ł							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA		 	+-	 	 		1			1							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA			1	1	I		1	1		1							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA			1				1	•]							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA									<u></u>								
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA			1		`		1		<u> </u>	Į							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA		 	4	 	}		1	1	├	1	 				·		
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA		i	1		Ì	-	1		 -	ł							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA		 	+	 	-	-	1	1	H	1						 .	
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA				1	1	 	1	1	!	1							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA	 	 	1	 		 	1			1							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA		l	1	1			1	ł		1							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA			T				1	l	L	Į							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA				 			Į .		L	l							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA		1			1	<u> </u>	Į	l	<u></u>	l					.,		
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA			—		-	}	Į	1	-	ł							
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA		1		İ	1	<u> </u>	ł	l	\vdash	1							·
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	L	<u> </u>		<u> </u>	ł						
Sample interval submitted for analysis. NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA	NOTE	s:	Sam	ole interval						1	Logged by:		Judi Shapir	0			
NR - No reading NA - Not applicable Drilling Contractor: M&R Environmental Drilling Phil Thomsbury PELL SPECIFICATIONS: Ji a. Screen /Riser: NA Screen Interval: NA Sandpack: NA Grout: NA	•				submitte	d for ana	lysis.		25-245	ĺ						-	
Driller: Phil Thomsbury ELL SPECIFICATIONS: Driller: Phil Thomsbury Sandpack: NA Grout:										-	Drilling Contra	ctor:	M&R Envir	onmental Drill	ing	_	
)ELL SPECIFICATIONS: Ji a. Screen/Riser: NA Screen Interval: NA Sandpack: NA Grout: NA			NA -	Not applica	ble											-	
uli a. Screen/Riser: NA Screen Interval: NA Sandpack: NA Grout: NA											Oriller:		Phil Thoms	bury		_	
uli a. Screen/Riser: NA Screen Interval: NA Sandpack: NA Grout: NA	\			710310													
D/Q.00001111000				HONS:		-	• ·					and	NA		C	NA	
BOTTOM OF MOIE. 10 TI RISEF INTERVAL. NA DEHIGHTE. NA COVEY. NA						-			_			•					· · · · · · · · · · · · · · · · · · ·
	BOttom	of Hole.	10 ft			- Kise	a miterva	di.	NA.			ændin e .	11/1		Cover:	IAW	

											T					**	
	_	_		FA 5			•				Job. No.	Client		, NAVFAC	Location:	EBS 85	
and the same				EA Eng				,			29600.60			Davisville		South of E-1	07
	A	N.	\	and 1	echno	ology,	inc.				Drilling Metho				Boring No).	
		1									and 3 in. (as n	oted) split s	poon sample	9]		
, <u> </u>				LOG O	F SOIL	. BORI	NG				continuous.				E	BS-85-SB	-02
y ~															1		
oordi	nates:	:									Sampling Met	hod: 2" and	3" OD split-b	апе			
Surface	e Elev	ration	:						_		sampler driver	by 140-lb	hammer fallin	ng 30"	ľ	Sheet 1 of	1
√Vell R	iser E	levati	on:						-		Drilling Water	Level:	0.5 ft bgs		Start	Drilling	Finish
1									-		Date:	04/29/96	Time:	05:40 PM	04/29/96		04/29/96
ļ											Surface Condi	tions:	Grass		05:10 PM		05:40 PM
Sample	Inc	hes	Dpth	Samp #	PID	Blows	Strat	Ft		USCS					03.10 7 10	·	U3.40 PM
			Csg.	/ depth	(ppm)	per	Unit	bgs	ı	Log							
1,700	ŀ		O3g.			6"	On it	l bys	ll	Log	ł		SOH I	DESCRIF	TION		
	Rec	.VIO	<u> </u>	(ft)	Above bk.			<u> </u>	(\$5/2000)		G 411 0715 F-						
3"	24		_	S-1		3		٥					in top 1" and	3-4", dark bro	wn, moist	(not included in	ana-
SS	<u> </u>	21	٥	0-2	3.4	10					lytical samp						
İ						23		1			4-13" Silty fine	sand, trac	e angular gra	vel to 1", 1 co	bble, dark g	gray, moist.	
L						34					13-16" Mediur	n to fine sau	nd, little coan	se sand, yello	wish-orange	e, moist.	
3"	24			S-2		13		2		-	16-21" Gravel				moist.		
SS		21	0	2-4	8.4	24					0-9" Silty fine						
•						20		3			9-21" Silty fine		sand, trace	subrounded g	ravel to 1" i	n the bottom	
L				L		22					6", dark gra						
	24			S-3		11		4			Sitty fine sand	grading to f	ne to mediur	n sand at 12",	olive gray	to yellowish-	
SS		14	0	4-6	3.4	11			4475		orange at 1					*	
						11		5	F (
						12			1017 TH								
	24			S-4		12		6			Silty fine to me	dium sand,	olive gray an	d yellowish-or	ange, wet.		
ss		13	0	6-8	2.7	13			À.			· · · · · · · · · · · · · · · · · · ·					[
						12		7	31-74							:	
				}		15			9								
	24			S-5		9		8	Sei Line	•	Fine to medium	sand, olive	grav and ve	lowish-orano	e wet		
SS	Γ'	14	0	8-10	3.4	11							gray and yo		a, wet.	<u> </u>	
	_				0.7	14		9			<u> </u>						
				i		15			2					- 			
/	-					,,,	ı	10			<u> </u>					<u>:</u>	
الز	j						1		-								
F		<u> </u>	-						\vdash								
		٠ ا					- 1				· · · · · ·			1			
ļ		-			· -		- 1		-1			***	······································	·			·
				: :			1		\dashv								
 		-								- 1							
							1		_	- 1				-			
<u> </u>							- 1			- 1							
1	•																
							- 1		_							·······	
i i																	
	<u></u>						į		_	į							
					ļ ļ		Į	i		ı							
							- 1		_	Į							
j l					l		ł	- 1		į		<u> </u>					
							ŀ										
							ŀ	Ī	_]								
L		[[\Box	ſ							
							Į		\Box	[
]		ı		J	İ		J	ı	\neg	j							
		_					l	İ	\neg	ľ		• • • • • • • • • • • • • • • • • • • •					
1 1		Į	l		ŀ		j	ŀ	\dashv	ŀ				*	······		
<u> </u>				L		.			1_	1			-				
NOTE	S:		Samo	le interval							Logged by:		Judi Shapiro				
				le interval s	ubmitted	for analy	sis.	ŝ	20225		coggou by.		Jud. Ollopii o			-	
			•	o reading		,			-	1	Drilling Contra	ctor:	M&R Environ	nmental Drillin	α		
				lot applicat	ile							-		Ornari	J	-	
			1	upphical							Driller:		Phil Thornsb	urv			
										,	oimer.	_	THE THURSDA	uı y		-	
ACI I	CDE	-CIE	1C A 1	TIONS:													
<i>y</i>	-			10173.		<u></u>	- le*		N A		_		MA				
ປາລ.Scre		-					n Interv	_	NA.			•	NA		Grout:	NA	
8cattom o	or Hole	e: -	10 ft			Riser	Interval		NA		B	entonite: _	NA .		Cover:	NA	

.

.

TABLE 4-1A

BUILDING AND AREA RELATED EBS REVIEW ITEMS VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL AND GROUNDWATER SAMPLES NCBC DAVISVILLE, RI

TARGET COMPOUND LIST VOLATILES BY CLP OLM 01.8 METHOD

SAMPLE ID		EBS 75-5	B-02	EBS 85-S	B-01	EBS 85-9	B-01	EBS 85-S	B-02	EBS 85-S	B-02	ERS RLM	W.A1	EBS 88-M	CW. Or
SAMPLE INTERVAL		8-10		0-2'		2-4'		2-4'		8-10'		200 00 11	111-01	li .	
LAB SAMPLE ID		96063	96063	10	n	9606329		9606330		9606331		000000		[DUP]	
ISDG #		96069		96069		96069		960697		960697		9606276 960689		9606277	
DATIE COLLECTED		05/02/		05/01/		05/01/		05/01/96		05/01/96		05/01/	-	96068	-
DATIE ANALYZED		05/02/	-	05/06/	05/06/	_	05/08/	-	05/08/9		05/09/	_	05/01/		
		SOI		SOIL		SOII	-	SOIL	-	SOIL		B		05/09/	
SAMPLE MATRIX		1.0		30h 1.0	•	1.0	•	1.0	•	1.0	•	WATE	AK.	WATE	SR
DILUTION FACTOR				18		87.0		89.0				1.0		1.0	
PERCENT SOLIDS	1 5	88.0	_	90.0	10	-	_	CONC		85.0		25.0		25.0	
COMPOUND	RL	CONC ug/Kg	Q	CONC ug/Kg	Q	CONC ug/Kg	Q	ug/Kg	Q	CONC ug/Kg	Q	CONC UG/L	Q	CONC UG/L	Q
Chlor omethane	10	11	U	11	U	11	U	11	U	12	Ü	2	Ü	2	Ū
Brom omethane	10	11	U	11	บ	11	Ū	11	U	12	U	2	ໜ	2	Ū
Vinyl Chloride	10	11	υ	11	U	11	U	11	U	12	U	2	UJ	2	Ū
Chior oethane	10	111	U	11	U	11	U	11	U	12	υ	12	IJ	2	U
Methylene Chloride	5	111	Ü	11	U	11	U	11	U	12	Ü	1	W	3	Ü
Aceto ne	10	111	U	63		48	J	28	J	12	U	3	UJ	5	Ū
Carbon Disulfide	5	111	U	11	υ	11	U	11	U	12	U	2	W	2	Ü
1,1-Dichloroethene	5	11	U	11	U	11	U	11	U	12	Ü	2	បរ	2	Ü
1,1-Dichloroethane	5	1	U	11	U	11	U	11	U	12	Ü	2	ໜ	2	U
1,2-Dichloroethene (total)	5	41	U	11	U	11	U	11	U	12	U	18	1	16	1
Chloroform	5	1)	U	11	บ	11	U	11	U	12	Ü	2	UJ	2	U
1,2-Dichloroethane	5	11	U	11	U	11	U	11	U	12	U	2	(נט/	2	U
2-Butanone	10	11	U	55	J	99	J	63	J	52	J	5	נע	5	U
1,1,1-Trichloroethane	5	11	U	11	U.	11	บ	11	U	12 ;	U	2	ď	2	U
Carbon Tetrachloride	5	11	U	11	Ü	11	บ	11	U	12	U	2	υ\	2	U
Bromodichloromethane	5	11	U	11	U	11	U	11	U	12	U	2	∪∖	2	U
1,2-Dichloropropane	5	11	U	11	U	11	U	11	U	12	U	2	U	2	U
cis-1,3-Dichloropropene	5	11	U	11	U	- 11	U	11	U	12	U	2	U	2	U
trans-1,3-Dichloropropene	5	11	U	11	U	11	U	11	U	12	٦	2	U	2	U
Trichloroethene	5	11	U	11	U	11	U	11	U	12	Ü	2	J	\ 3	
Dibrornochloromethane	5	11	U	11	U	11	U	11	U	12	U	2	บ	\2	U
1,1,2-Trichloroethane	5	- 11	U	11	U	11	Ü	11	U	12	U	2	U	\$	U
Benzene	5	11	U	11	บ	11	ט	11	U	12	U	2	U	2	U
Bromoform	5	11	\U	11	כ	11	U	11	U	12	U	2	U	2	U
4-Methyl-2-Pentanone	10	11	\U	11	U	11	ט	11	U	12	U	5	U	5	Ü
2-Hexanone	10	11	U	11	U	11	U	11	U	12	U	5	U	5	Ü
Tetrac hloroethene	5	11	14	11	U	11	U	11	U	.12	U	2	U	2	U
1,1,2,2-Tetrachloroethane	5	11	4	11	ט	11	U	11	U	12	ט	2	U	2	U
Toluerie	5	11	4	36		15		6	J	12	U	2	U	2	\U
Chlorobenzene	5	11	Ŋ	11	U	11	ט	11	U	12	U	2	U.	2	V
Ethylbenzene	5	11	U	11	υ	11	U	11	U	12	U	2	U	2	И
Styrene	5	11	U	11	U	11	U	11	U	12	Ū	2	U	2	บโ
Xylenes (total)	5	11	U	11	U	11	U	11	U	12	U	2	U	2	U

Appendix A-5

Review Item 86 (Floor Drains, Building E-107)

DOCK DRAINAGE PIPE GRASS AREA PAVED AREA HARBOR BUILDING E-107 GRASS AREA GRASS AREA DRAINAGE SWAL WOODED AREA GRASS AREA PAVED ACCESS ROAD WOODED AREA **LEGEND:** FIGURE 22 **TEST TRENCH LOCATIONS** NAVAL CONSTRUCTION BATTALION CENTER DAVISVILLE, RHODE ISLAND DRAINS SEALED **EBS REVIEW ITEM 86 BUILDING E-107** SCALE: AS SHOWN CADDFILE: 1284M35a.DWG

APPENDIX B

PHASE II EBS FOLLOW-ON INVESTIGATION

B-1	Review Item 28	(Former Creosote Dip Tank and Fire
	Fighting Training	(Areas)
	0 0	Boring Logs
	Data Valida	ntion Reports (included in Volume 2)
B-2	Review Item 28	(UST Area)
	Magnetome	eter Survey Report
B-3	Review Item 28	(UST Area)
	Test Pit Log	gs and Analytical Report (FWENC)
B-4	Review Item 28	(UST Area)
	Test Pit Log	gs (EA/FWENC)
B-5	Review Item 60	(Septic Tanks Building E-107)
	Tank Remo	val - Data Validation Report (included in
	Volume 2)	• `
	,	

Appendix B-1

Review Item 28 (Former Creosote Dip Tank and Fire Fighting Training Areas)

Figures and Boring Logs
Data Validation Reports (included in Volume 2)

				EA Eng		ng, Sch logy, k					Job. No. 29600.60 Drilling Metho	Client:	NORDIV,	Pavisville	Location: Boring No.	E	3S 28
		A		LOG O							split barrel sa			ing a OU	BOTHING INC.	S	B-01
	inates: :e Elevi		:						-		Sampling Me driven by a 14				She	et 1 c	of 1
Well F	Riser El	levati	ion:						•		Drilling Water Date	r Level	10 ft 17 June 97		Start	Drilling	Finish
											Time		03:00 PM		17 June 97 01:30 PM	Times	17 June 97 03:00 PM
Sample	Inch	08	Dpth	Samp#	PfD	Blows		Ft		USCS	Surface Cond	litions: Gras	:s				
Туре	Drive		Csg.	/ depth	(ppm)	per		bgs		Log							
Soil	Rec 24	vrd		(ft) SB-01	Above bk. 5.2	6° 2	 	0	Н		0 - 4" Grey/b	mwn silly o		DESCRI			
		17		0-2		11					4" - 2' Grey/b	rown, silty -	medium san	d with few st	ones to 1/2"; dr	y, loose.	
1						9		1	Н		<u> </u>						
	24				5.9	2	1	2							nes to 1/2"; dry		
<u> </u>	├—	14				3		3	Н		3' - 4' Yellow/	brown, fine -	medium san	d with 1/2" la	yer of brown o	ganic mate	rial; dry, loose
						6		,									
	24	12			5.4	10 18		4			4' - 6' Dark bi	rown, fine - r	nedium sand	y organic ma	terial; dry, loca	θ.	
	1					14		5									
	24				12.4	10 18		6			6' - 8' Yellow	hour for	madium co	od: day baca			
L		18				17		Ĭ			J - O TORGVO	orover, mas	niouium sai	id, dry, louse	·		
	1					14 16		7	Н			 					
Soil	24			SB-01	19.8	10		8			8' - 10' Grey/I	brown, fine -	medium san	d; moist, loo	Se,		
 	├	18		8'-10'		11		9									
						8		Ĵ								·	
1	24	17		:	22.0	11		10			10' - 12' Grey	/brown, fine	- medium se	nd; wet, loos	θ,		
	1					9		11									
	├					8		12	\dashv		End of boring	at 12 ft helo	w around sud	face Boroka	le backfilled w	th compart o	
	<u> </u>													aco. Corone	NO DEPORTING W	ar centern g	sout.
1	1							3	-								
								4									
 	╂—							5	\dashv								
	<u> </u>													· · · · · · · · · · · · · · · · · · ·			
1								6	\dashv								
								7									
 	╀─	4	-					8									
<u></u>	<u> </u>											·····					
1	1	j						9	4								
	┞	\exists					ı	٥	コ	l		·					
<u></u>	<u>L</u>		نبــا					1	_1			*					
NOTE	S:										Logged by:	نــ	Kevin M. Cal	iwell			
						N.					Drilling Contr	actor:	M & R Enviro	nmental			
											Driller:		Brad Haas, V	Villiam Willia	ms		
			ICAT	IONS:													
Dia.Sci Bottom		-					en Interv Interval	-				Sandpack: _ Bentonite:	**		Grout:		· · · · · · · · · · · · · · · · · · ·

				E A F	. l	0.1					Job. No.	Client:		, NAVFAC	Location:		20.00	
1				EA Eng							29600.80			Davisville			BS 28	
ŀ				and T	echno	юgy, li	nc.				Drilling Metho			ing 3" OD	Boring No.	_	ND 00	
											split barrel sa	impler contir	nuously.		Į	5	SB-02	
Í				LOG O	r soil	BORII	VG					·		···	Į			
		_									C	AL - 4: 02 0-						
Coordi						 			-		Sampling Me					4 -		
Surface						·			-		driven by a 1			n.		eet 1		
Well R	ser E	ieval	ION:			,			-		Drilling Wate	Level	8 ft	 	Start	Drilling		
1											Date	 -	18 June 97	 	18 June 97	Times		
1											Time	Ware O	MA 00:80	<u> </u>	07:30 AM		08:00 A	M
Sample	Incl		Dpth	Samp #	PID	Blows	_	E-	T	USCS	Surface Cond	INONS: Gras	i8		L			
-				_		ı	i	FI	ŀ		ĺ							į
Туре	Drive		Cag.	/ depth	(ppm)	per	1	bgs		Log	ļ		eou i	SECONI	STICN			
-	Rec	vrd	 	(ft)	Above bk.	6"	 	<u> </u>	₽-					DESCRI	TION			
Soil	24		1	SB-02	1.0	2	l	٥	 		0 - 4" Grey/b	rown, silty, o	rganic soil;	iry, loose.				
		18		0-2'		7		١.	<u> </u> -	l	4" - 2' Grey/t	prown, silty, f	ine - mediun	n sand with fe	w rounded s	tones to 1	/2 "; dry, loos	6 .
			l			10 12		1	⊢									_
_	-		}—		-		1	١.	┝	Ì	3 41 11 14 1							_
	24	16	l		2.0	12		2	—	l	2' - 4' Light b	rown, silly -	medium san	a; ary, loose.			· · · · · · · · · · · · · · · · · · ·	
		10	\vdash			8		3	! -	l	 	· · · · · · · · · · · · · · · · · · ·						
	l		l	ļ i	1 :	9		l ³	 		 						 	_
	24				1.5	8		4	-		4' - 6' Light b	COLUMN COMM	madium	de des le				
! !	[~	18		ļ	1.5	8		 	┢		o Light B	- wii, siny -	wewum san	u, qry, 10080.	· · · · · · · · · · · · · · · · · · ·			_
{ ──-	 	-10				8		5	<u> </u>		 	· · · · · · · · · · · · · · · · · · ·						_
	Ī								\vdash		 							_
	24	_			1.5	10		6	⊢		6' - 8' Grey/b	roum fine - r	nodium con	li malai Jasa				
1 1		20			1	14		۰	-		G-8 Gleyin	10mi, (1110 - 1	neoruin san	, moist, 100s	0 .			-
	-	_	_			14		7	H							 .		
				l		13	ļ İ	Ι΄	-								 	
Soil	24			SB-02	54.1	10		8	H		8' - 10' Grey/	hrown fine	medium ec-	viruat laac-				
J		20		8'-10'		10		ľ	П	'	- 15 AIGN		World Per	~, vvoi, 100SE				-4
						8		9	H				·	4				4
						8			\Box		<u> </u>							4
								10			End of boring	at 10 ft helm	w around su	face Borels	de beckfilled	with co-	ont annua	-
												- 1 - 1 - 10 10 10 10 10 10 10 10 10 10 10 10 10		LUIGIR		was cess	orn yi uu i.	-
								1										┥
[П			···		*				\dashv
								2										\dashv
																		\dashv
								3										4
														***************************************				┥
								4										4
																		7
7				_				5									· · · · · · · · · · · · · · · · · · ·	٦
																		7
		Į						6									-	┪
																		7
ŀ					I			7										7
																		7
		ı		į į	l			8	Ш									1
								j	Ш									1
								9										7
							1											٦
i				•	l		l	0										7
	<u>-</u>]												1
NOTE	S:										Logged by:		Kevin M. Cal	dwell				_
											Drilling Contr	ractor:	M&R Enviro	nmental				-
											Driller:		Brad Haas, V	Villiam willia	ms			_
		 -		,								-						_
WELL	SPE	CIF	CAT	IONS:									•					
Dia.Scre	en/Ri:	ser:_				Scree	on Interv	ral:				Sandpack: _			Grout:			
Bottom o	of Hole	B: _				Riser	Interva):				Bentonite:			Cover:			-

										Job. No.	Client:	MODDAY	NAVFAC	Location:		
			EA Eng	in eri	na Sci	i nce				Job. No. 29600.60	Cilent:		, NAVFAC Davisville	Location:	FF	3S 28
		1	and T	chn	logy, i	nc.	•			Drilling Metho	od: B61 mob			Boring No.	- La h-	
		7		J	-3/)'					split barrel sa			<u> </u>	1	SI	B-03
741			LOG O	F SOIL	. BORI	NG					, , , , , , , , , , , , , , , , , , , ,			1	7.	-
														1		
Coordi	inates:							_		Sampling Me	thod: 3" OD	split barrel s	ampler			
Surfac	e Elevation	on:						-		driven by a 1).		eet 1	
Well R	iser Elev	ation:						_		Drilling Water	r Level	8 ft		Start	Drilling	Finish
f										Date		18 June 97	ļ	18 June 97	Times	18 June 97
										Time	dialara - Car	09:00 AM	<u> </u>	08:20 AM		09:00 AM
C	Inches	Dpth	Samp #	PID	Blows		Ft	т-	uscs	Surface Cond	unions: Gras	55		<u> </u>		
Sample Type	Driven/i		/ depth	(ppm)	per	.	bgs	[Log	ļ						
, ype	Recyro	1 -	(ft)	Above bk.	6"			1		ł		SOIL I	DESCRI	PTION		
Soil	24	+-	SB-03	16.2	1		0	 	 	0-2" Brown,	silty, organic					
		20	0-2'		1	1			1	2" - 2' Grey/t						 =- , <u></u> -
		1	<u> </u>		4]	1		1							
	<u> </u>	1_			4					ļ <u> </u>	- -					
	24			8.9	7		2	<u> </u>	I	2' - 4' Grey/b	rown, fine - r	medium sand	dry, loose.			
L	 1	18			8		3	<u> </u>		<u> </u>		· · · · · · · · · · · · · · · · · · ·				
l					10 12		3	—	Ī							
 -	24	+-	 	15.6	12		4	\vdash	l	4' - 6' Grey/b	rown. fine - r	nedium sand	: moist loose		-	
1		20		'"	12	1	ĺ	\vdash		l	,		,			
	1	 	1		16		5		l							
L	<u> </u>				27		l		ŀ							
Soil	24		SB-03	60.7	27		6		İ	6' - 7' Grey/b						
	1 1	2	6' - 8'	 	30		١ _	<u> </u>		7' - 8' Brown,	, silty sand w	ith 25% med	ium gravel; m	oist firm.		
			Ì		16 21		7	<u> </u>	1							
	24	+-	 	42.4	29		8	\vdash		8' - 10' Brown	n. siltv sand [.]	wet				
ł		2	1	72.7	32		' '	H	ŀ		, only duriu,		· · · · · · · · · · · · · · · · · · ·			
	† — ·	1	—	t	18		9									
	<u>L</u>		L	<u>L</u>	20		1		ļ							
[10									
<u></u>			<u> </u>	<u> </u>	<u> </u>		١.	<u> </u>		End of boring	at 10 ft belo	w ground sur	face. Boreho	ole backfilled	with cemnt	grout.
l	1	1	ł		 		1	<u> </u>								
 	 	+	 	 	 	i i	2	-	*						····	
1		1	1					\vdash								
	 	+					3	Г								
[L		<u>l</u>	<u> </u>												
		T					4									
<u> </u>	<u> </u>		<u> </u>		ļ			<u> </u>								
					<u> </u>		5	$\vdash \vdash$								
<u> </u>	 		<u> </u>	 	 		6	\vdash						······································		
		1	ļ		 			\vdash								
 	 	+	\vdash	 	 -		7					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
			1	•				П								
 	 	1	1				8									
L																
							9									
	<u> </u>		<u> </u>		<u> </u>			Ш								
		1	ļ]			0	Ш								
<u></u>	<u></u>		<u> </u>	<u> </u>	L			لـــا								
NOTE	ES:									Logged by:		Kevin M. Ca	ldwell			·
										Drilling Cont	ractor:	M & R Envir	onmental			
										Driller:	·	Brad Haas,	William Willia	ams	-	
)	_ epe∧	IEICA	TIONS.								•	<u> </u>				
	reen/Rise		TIONS:		Scree	en Inten	val:				Sandpack:			Grout:		
Bottom	of Hole:				Rise	r Interva	i :				Bentonite:			Cover:		

										Fi			
			EA Eng	inoori	na Sci	ionco				Job. No. 29600.60	Client:	NORDIV, NAVFAC	Location: EBS 28
-	-		and T	jiileeli 'echn	gy, I	nc.					nd B61 mol	NCBC Davisville pile drill pushing 3" OD	Boring No.
	5 /A	\	u		. 97, .				,	split barrel sa			SB-04
		:	LOG O	F SOIL	BORI	NG			3	opiit barror ob	impici donari	idousiy.	1
												· · · · · · · · · · · · · · · · · · ·	-
Coordi	nates:									Sampling Me	thod: 3" OD	split barrel sampler	
Surface	e Elevation	1:						•		driven by a 14	40 lb hamme	er falling 30 in.	Sheet 1 of 1
Well R	iser Elevat	ion:								Drilling Water	Level	8 ft	Start Drilling Finish
			-							Date		18 June 97	18 June 97 Times 18 June 97
										Time		09:30 AM	09:10 AM 09:40 AM
		10		DID.				_	11000	Surface Cond	litions: Gras	SS	
Sample Type	Inches Driven/In.	Dpth Csg.	Samp # / depth	PID (ppm)	Blows		Ft bgs		USCS Log				
rype	Recyrd	Cay.		(ppm)	per 6"		bys		Log			SOIL DESCRI	DTION
Soil	24	_	(ft) SB-04	Above bk. 16.5	2	\vdash	0	Н		0 -2" Brown	sity omanic	c soil; dry, loose.	FION
0011	12		0-2'	10.5	14	1		Н		2" - 2" Brown,			
					14		1						
					10								
Soil	24		SB-04	34.3	13		2			2' - 4' Brown,	silty - medic	um sand; dry, loose.	
	14		2'-4'		13							4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
					15		3	 					
	24			34.0	16 16		4	Н		A! C! Drouen	ailhe madie	m sand; dry, loose.	
				34.0	16		4	Н		4 - 0 DIUWII,	sity - mediu	in sand, dry, loose.	
	 				17		5	H				····	
		1			24								
	24			17.1	20		6			6' - 8' Brown,	medium - co	oarse sand with 10% fine	gravel; moist, loose.
	8				20			Ш					
					116 12		7	Н					
-	24			54.3	10		8	\vdash		8' - 10' Brown	medium .	coarse sand with 10 % fr	e dravel; wat loose
	6		1		15					10 210111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·	graver, wer, loads.
		- 1			15	1	9		,			4	
					20							•	
	24 6						10			End of boring	at 10 ft below	w ground surface. Borel	ole backfilled with cement grout.
							1						
							2						
						1	3						
							4						
									:				
						ı	5						
					I		_		1				
							6	\dashv					
			I				7	\dashv					
							8		. [
							9	_	- }	 			
							0	\dashv	1				
Ì							۲	\dashv	ŀ				
NOTE	 S:				<u>J</u>					Logged by:		Kevin M. Caldwell	
										Drilling Contr	ractor:	M & R Environmental	
										Driller:	-	Brad Haas, William Will	iams
WELL	SPECIF	ICAT	IONS:										
	en/Riser:				Scree	en Interv	al:			;	Sandpack:		Grout:
Bottom o	-				Riser	Interval	: -				Bentonite:		Cover:

											Contract	<u> </u>	440000	1141			
				EA F	dne	na 6-1	lones				Job. No.	Client:		NAVFAC	Location:	CD:	C 20
				EA Eng		ng, Sc olgy, I		,			29600.60 Drilling Metho	nd: R61 mol		Davisville	Boring No.	CB	S 28
	V		\	anu I	COMMO	y yy, i	116.				split barrel sa			ilg 3 OD	Leoning No.	90	3-05
		V		LOG O	F SOII	BUDII	NG				apiit Dailei Sa	mpier conti	idoualy.		1	JE	, 00
											 				1		
Coordi	nates:										Sampling Me	thod: 3" OD	split barrel s	ampler	\vdash		
Surfac			:						-		driven by a 14				She	eet 1 d	of 1
well R									-		Drilling Water		6 ft		Start	Drilling	Finish
									_		Date		18 June 97		18 June 97	Times	18 june 97
ł											Time		10:10 AM		09:50 AM		10:20 AM
<u></u>			_	r	T :=::	r	,		_	luee"	Surface Cond	litions: Gras	ss		<u></u>		
Sample			Dpth	Samp #	PID	Blows	[Ft		uscs						·	
Туре	Drive		Csg.	/ depth	(ppm)	per		bgs		Log			9011 F	DESCRI	OTION		
<u> </u>	Rec	vrd	⊢ –	(ft) SB-05	Above bk.	6"	ļ		⊢	ļ	0 - 2" Brown,	pilly acces			FIIUN		
Soil	24	8		0-2'	43.5	3	1	ľ	\vdash	ł	2" - 2' Brown,					·	
	t	_ -	<u> </u>	 -	\vdash	3	1	1	\vdash	l		, ///00/	Julia, diy	,			
	Į.			1	į	3	1		Г	1							
	24				15.1	6		2		Ì	2' - 4' Brown,	sitty - mediu	ım sand; dry,	loose.			
<u></u>	<u> </u>	10				12	[ĺ							
_						6		3	ļ								
	l				100	7			\vdash		A' R' D	ailb*	um ec-d: d-	loops with	Off Income of the		
ŀ	24	14			16.9	11 21		4	\vdash	l	4' - 6' Brown, at 4 1/2 ft.	siny - medit	um sano; dry,	loose with a	∠ layer of bla	ack tine - me	ulum sand
<u> </u>	╆				 	16		5	\vdash	1	WL 7 1/6 IL			· · · · · · · · · · · · · · · · · · ·			
						12			<u> </u>		<u> </u>						
Soil	24			SB-05	41.7	12		6			6' - 8' Brown,	fine - mediu	ım sand; wet,	loose.			
<u></u>	<u> </u>	12		6'-8'		10											
					l	8		7									
<u> </u>	 				<u> </u>	9		_	Н		End of book	at 0 G L -1-		na Danie i	a basten .	ial .	
	1			ŀ				8	┞┈		End of boring	at a tr Delow	y ground surfa	ice. Borenol	e oackfilled w	im cement g	rout.
	 		<u> </u>		-			9	Н								
	1					\vdash			Н								
1	1							0									
<u></u>	<u> </u>				<u> </u>				П			, , , , , , , , , , , ,					
1	ĺ							1	Ш								
<u> </u>	—				\vdash			2	Н								
l	1					-		4	\vdash								
}	 		\vdash			-		3	H			•					
	1								П								
	Π							4									
<u></u>	<u> </u>		L						Ш		L						
]								5									
<u> </u>					-			6	Н								
1	1					\vdash		0	Н								
 	\vdash							7	\vdash							····	
ł	1								\dashv						-		
								8									
L																	
								9									
	<u> </u>										<u> </u>						
								0									
L	<u> </u>					<u> </u>			Ш						·		
NOTE	S:										Logged by:		Kevin M. Cal	dwell			
												-				·········	
											Drilling Contr	actor:	M & R Enviro	nmental			
											Driller:		Brad Haas, 1	William Willia	ams		
												-					
WELL	. SPE	ECIF	ICAT	IONS:													
Dia.Scr		-					en Interv	-				Sandpack.			Grout:		
Bottom	of Hol	e: -			_ 	Riser	Interva	l:				Bentonite:	_		Cover:		

										T	A.: .		
			EA Eng	ilneeri	na Sci	i nco				Job. No. 29600.60	Client:	NORDIV, NAVFA	——
	. A	\	and T	jiileeri Techn	logy, l	nc.					d: B61 mol	NCBC Davisville bile drill pushing a 3" (
	YA	\			3/1'					split barrel sa			SB-06
		•	LOG O	F SOIL	. BORII	NG			,			idousiy.	
		•							7				
Coordi	nates:									Sampling Me	thod: 3" OD	split barrel sampler	
Surface	e Elevation	n:										er falling 30 in.	Sheet 1 of 1
VVell Ri	iser Eleval	tion:								Drilling Water	Level	8 ft	Start Drilling Finish
										Date		18 June 97	18 June 97 Times 18 june 97
1										Time		11:35 AM	11:00 AM 11:35 AM
Sample	Inches	Dpth	Samp #	PID	Blows		Ft	_	ÚSCS	Surface Cond	itions: Gras	SS	
	Driven/In.	1 '	/ depth	(ppm)	per	<u> </u>	bgs		Log				
2,700	Recvrd	Tools.	(ft)	Above bk.	6"		Jgo		-09	Ì		SOIL DESC	RIPTION
Soil	24	1	SB-06	9.3	2		0			0 - 2' Brown,	silty - fine sa	and; dry, loose.	
	14		0-2'	Į	12	1		Г					
					11		1						
		<u> </u>			6								
	24	Į.			5		2	L		2' - 4' No reci	overy.		
	0	 		 	3		3	<u> </u>		<u> </u>			
		•			4		3	-					
	24			6.3	4		4	Н		4' - 6' Dark br	own, fine - r	medium sand; moist, k	pose
	12	l			4								
					4		5						
					4								
	24			8.7	4		6	Ш	1	6' - 8' Dark br	own, mediu	m - coarse sand with	0% fine gravel; moist, loose.
	2				9 21		7						
					22			Н					
Soil	24		SB-06	32.1	20		8	Н		8' - 10' Dark t	rown, medi	um - coarse sand with	10% fine gravel; wet, loose.
	8		8'-10'		18	1						3	
					21		9		*			į.	
					23	i			,			1	
					·		10	Щ		Food of books	-1 40 A b -1-		
		-				l	1			End of boring	at 10 n belo	w ground surface. Bo	rehole backfilled with cement grout.
													
							2				*****		
		L											
							3						
							4						
					-		4	-					
	-	-					5						
	,											·	
							6						
						l							
							7	Щ	l				
		$\vdash\vdash$			$\vdash \vdash \vdash$		8	_				·····	
							°						
					 		9	Н					
							٦	\dashv	İ		-		
							0	刂					
NOTE	g.									l oggod b		Kovin M. Calata	· · · · · · · · · · · · · · · · · · ·
NOIE	3.									Logged by:	-	Kevin M. Caldwell	
										Drilling Contr	-	M & R Environmental	
										Driller:	-	Brad Haas, William V	villiams
WELL	SPECIF	FICAT	IONS:										
	en/Riser:				Scree	en Interv	ai:				Sandpack:		Grout
Bottom o	of Hole:				Riser	Interval	: •				Bentonite:		Cover

										lob Ma	Client:	NOPPE'	NAVEAG	Il postis		-
			EA F	dnoc-*	na Cri	iones				Job. No. 29600.60	Client:		NAVFAC Davisville	Location:	E	S 28
			EA Eng	jineeni	ng, Sci	ience,				Drilling Metho	od: B61 mot			Paring No.		00 20
		\	and i	cuno	logy, l	11 じ .							ng a 3" UU	Boring No.	Q1	B-07
					DODI	NO				split barrel sa	ampier contin	luousiy.		1	J.	D-0 <i>1</i>
		-	LOG O	r SUIL	. BUKII	NG				<u> </u>				-		
T	nate-									Sampling Me	thod: 3" OD	enlit harrol -	amnler	 	 	
Coordi								-		driven by a 1				Sheet	1 of 1	
	e Elevation iser Elevat							-		Drilling Water		6 ft	'	Start	Drilling	Finish
y veii K	isei Eieväl	ion.						-		Date		18 June 97	 	18 June 97	Times	18 June 97
1										Time		12:20 PM		11:50 AM	111163	12:30 PM
										Surface Cond	ditions: Asnl		<u> </u>	11.55		12.30 FIV
Sample	Inches	Dpth	Samp #	PID	Biows		Ft		uscs					I		
Туре	Driven/In.		/ depth	(ppm)	per	i i	bgs	ŀ	Log							
.,,,,,	Recyrd	""	(ft)	Above bk.	6"		"	1	"	1		SOIL D	DESCRI	PTION		
Soit	24	 	SB-07	23.3	8		0	Н		0 - 4" Aspha	alt pavement					
	18	1	0-2'		12	1	ĺ	H		4" - 2' Brown			se.	 		
 	t	 	 	T	13	1	1								•	
]	1	I		14]			l							
Soil	24		SB-07	16.4	18		2			2' - 4' Dark b	rown, fine - r	nedium sand	with 10% fin	e gravel; dry,	firm.	
L	17	L	2'-4'	<u> </u>	34]										
		1			22	[3	oxdot								·
	<u> </u>	!			20	 		$ldsymbol{ldsymbol{ldsymbol{eta}}}$								
	24			6.0	18		4	<u> </u>		4' - 6' Brown			10% fine gra	vel; moist, firr	n,	
	14	 	 		15	}	_	<u> </u>		Wood fragme	ents in ena of	spoon.			-	
l	ļ				8 5		5	$\vdash\vdash$	•							
 	24	 		7.6	7	{	6	\vdash	•	6' - 8' Black s	silty - fine sa	nd: wet				
	17	1	ļ	7.6	5		١	\vdash		U-G Diack	Silty - Illie Sai	ilu, Wet.				
	 ''	├	 		8		7	\vdash								
i		1		ļ	9	i i	·	H	l							
 	 	 					8	Н		End of boring	at 8 ft below	ground surfa	ace. Borehol	e backfilled w	ith cemme	nt grout.
J	1	1	[1				Г	I							-
		1]	9									
Z	<u>L</u>	L														
							0									
		!	ļ		ļ]		<u> </u>								
	1	1	1		 		1	\vdash								
<u> </u>	 	┞	<u> </u>				_	\vdash	Ī							
	1					'	2	\vdash								
<u> </u>	 	\vdash		-	 		3	\vdash	Ì							
1	1	1	1		-	1		H								
	1	1	 	 	 		4	\vdash	l	 -						· · · · · · ·
1			1					-	l							
	 	 	ł	 	 	1 1	5	H	l	l		· · · · · · · · · · · · · · · · · · ·		. 		
1		}										···	******			
		T -		T]	6									
		L]										
	T						7		l							
	<u> </u>	<u>L</u>	<u></u>			į i		\Box	Ì							
			1				8		1							
	<u> </u>	<u> </u>	ļ	ļ	<u> </u>			Щ		<u></u>						
]	1			1			9	Щ								
	<u> </u>	L	ļ	<u> </u>	ļ		_	Щ		<u> </u>		·				
ŀ	1	l	1				0	\vdash		 			<u></u>			
<u>L</u> _	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			لـــا	L	l						
NOTE	:e .									Logged by:		Kevin M. Ca	iriwali		,	
NOTE	- 3.									rogger by:		Novii IVI. Ud	WINCH			
										Drilling Cont	tractor:	M & R Envir	onmental			
										-						
										Driller:		Brad Haas,	William William	ams		
j																
WELI	L SPECI	FICA	TIONS:													
Dia.Sc	reen/Riser:				Scre	en Inter	val:				Sandpack:			Grout:		
Rottom	of Hole:				Rise	r Interva	d:				Bentonite:			Cover:		

										lab Ma	00	WOCC"	NAV /= -	ii		
			EA Eng	nineeri	na Sci	ience				Job. No. 29600.60	Client:	NORDIV,	NAVFAC	Location:	EB	S 28
		\	and T	rechno	ng, sci logy, l	nc.				Drilling Metho	od: B61 mot			Boring No.		J 20
	YA				37,1				5	split barrel sa		·	-3		SI	3-08
		,	LOG O	F SOIL	BORI	NG							Ċ.	Ī	-	-
													t			
Coordi								-		Sampling Met						- 6 4
_	e Elevatio iser Eleva						·	-		driven by a 14 Drilling Water		er falling 30 in			eet 1	
v veli Ri	ISEI EIEVä	uuri.						-		Date Date	FEARI	18 June 97		Start 18 June 97	Drilling Times	Finish 18 June 97
1										Time		02:45 PM		02:20 PM	111163	03.00 PM
										Surface Cond	litions: Asph		· · · · · · · · · · · · · · · · · · ·			
Sample		Dpth	Samp #	PID	Blows		Ft		uscs							
Туре	Driven/In	. Csg.	/ depth	(ppm)	per		bgs		Log			6011 5		TION		
Soil	Recvrd 24	 	(ft) SB-08	Above bk. 12.2	6" 19		0			0 - 3" Aspha	lt navement		ESCRIF	TION		
201)	16	,	0-2'	12.2	15		١		1	3" - 2' Black,						
	<u> </u>	1	 		13		1	H	l		,	.,	 			
					20											
Soil	24	1	SB-08	35.3	20		2	Щ	·	2' - 4' Black, 1	fine - mediur	m sand; dry, le	oose. 3" laye	er of black wo	od at 3 ft.	
	12	1-	2'-4'		22 11		3	Н								
		1			8		3	\vdash				·····				
	24	1		27.8	9		4	H		4' - 6' Black, I	fine - mediur	n sand with 5	% fine grave	; moist. Blac	k ashy mat	erial
	3				9					throughout sa						
					17		5	Ш								
	24	 		Jar	13		6	-		6' - 8' Black, f	fine - mediur	n arayel and	coareo cond:	wot		
	24 2			Broken	10		J	Н		0 - 0 Black, I	ine - mediai	ii graver and t	Juaise Sailu,	wet.		
					18		7						-			
		 			17											
	24			39.0	8 5		8	Н		8' - 10' Black,	fine - mediu	ım gravel and	coarse sand	; wet. Porce	lain and gla	ss shards in
	2			\vdash	4		9.	-	,				î F			
					7			H					•			
							10			End of boring	at 10 ft belo	w ground surf	ace. Boreho	le backfilled	with cemen	t grout.
	L	—		L			ار									
							1	-								
		1	<u> </u>				2	Н						·		
						[· —···	
							3									
		\vdash			ļ		4	\vdash								
							4	Н								
							5									
						l	6	Щ								
							7	Н								
							'	H								
							8									
							9	Ц								
				\vdash		 	٥	\vdash								
							ď	\vdash							 -	
NOTE	 S:									Logged by:	<u> </u>	Kevin M. Cal	dwell			
										Drilling Contr	actor:	M & R Enviro	nmental			
										Driller:	-	Brad Haas, V	William Willia	ms		
WELL	SPECI	FICAT	IONS:													
	en/Riser.				Scree	en Interv	al:				Sandpack:			Grout:		
Bottom o	of Hole:				Riser	Interval	:]				Bentonite:			Cover:		

	een/Riser.					en Inten Interva					Sandpack: Bentonite:			Grout: Cover:		
WELL	_ SPECIF	-ICAT	TIONS:													
										Driller:	•	Brad Haas,		ms		
.40#2	. . .									Drilling Cont	ractor:	M & R Enviro			•	
NOTE				<u> </u>	<u> </u>					Logged by:		Kevin M. Cal	Idweli		-	
							0								• -	
							9	Н								
<u> </u>																
 				ļ			8	Н								
							7	H								
							6	\Box								
L							ə									
 		 					5									
		 		<u> </u>			4	Н								
							3	Ц				*****				
							2	Н				·				
				<u> </u>			1									
				 			0									
							9	\vdash				<u> </u>				
		<u> </u>								and or borning	at o it below	- Storting Stills	we. Durenon	S DOCKHIEU W	ui cement	grout.
ļ		ļ			16		8			End of boring	at 8 ft below	around eurfa	ace Rorehol	hackfilled w	ith comes*	grout
	8				21 20		7	Н		7' - 8' Black s	siit, wet.					
	24			2	27		6			6' - 7' Black,		vel and coars	e sand; wet.			
					20 31		5								·	
	0				29											
	24	ļ		<u> </u>	50 22		4			4' - 6' No rec	overv					
	18	 	Z-4	 	30		3			J - 7 DIAUK,	me - meului	Janu, Uly, I				
Soil	24		SB-09 2'-4'	17.4	20 28		2			2' - 3' Brown, 3' - 4' Black,						
					11		1					 				
	17		0-2'		8					3" - 2' Brown		um sand; dry,	loose.			
Soil	Recvrd 24	 	(ft) SB-09	Above bk. 9.8	6" 4		0	\vdash		0 - 3" Asphal	t pavement	SOIL	DESCRI	TION		
Sample Type	Inches Driven/In.	Dpth Csg.	/ depth	(ppm)	per		bgs		Log							
0	l backer	In-th	Samp#	PiD	Blows		Ft		USCS	Surface Cond	litions: Aspl	nait				
										Date Time		18 June 97 03:30 PM		18 June 97 03:10 PM	Times	18 June 97 03:40 PM
	iser Elevati									Drilling Water		6 ft 18 June 97		Start	Drilling	Finish
Coordin	nates: e Elevation	:						•		Sampling Me driven by a 14				She	et 1	of 1
										Complia - Ar	thad: 27 05	nelit herret		<u> </u>		
			LOG O	F SOIL	BORI	NG				split barrel sa	mpler contin	luously.		}	51	B-09
			and T	chn	l gy, l	nc.				Drilling Metho		oile drill pushi		Boring No.		B-09
			EA Eng	ineeri	na. Sci	ience.				Job. No. 29600.60	Client:	-	NAVFAC Davisville	Location:	EE	3S 28
											- ai :					

										Link M	- C" -			r		
			FA F.	.!						Job. No.	Client:	NORDIV,		Location:		20
E			EA Eng	jineerii	ng, Sci logy, l	ence,	•			29600.60	d Det mak	NCBC D		Doring Ma		S 28
		\	and 1	ecnno	nogy, I	ili.				Drilling Metho			ig a 3" OD	Boring No.	0	B-10
			LOG O	E eOn	יים רק	NG.			r h	split barrel sa	impier contir	iuousiy.		ł	3	טו -כ
_	- · -		LUG U	ı JUIL	. DUKII	10			•			ž <u> </u>		ł		
Coordi	natee.									Sampling Me	thod: 3" OD	solit barrel es	ampler	ļ		
	e Elevation	ı•						-		driven by a 14				Sh	eet 1	of 1
	iser Elevat							-		Drilling Water		6 ft		Start	Drilling	Finish
								-		Date		19 June 97		19 June 97		19 June 97
										Time		08:40 AM		07:30 AM		08:50 AM
										Surface Cond	litions: Gras	SS				
Sample	Inches	Dpth	Samp #	PID	Blows		Ft		uscs							
Туре	Driven/ln.	Csg.	/ depth	(ppm)	per		bgs		Log			0011 -	.=0.00.			i
<u> </u>	Recvrd	<u> </u>	(ft)	Abave bk.	6"			L	<u> </u>				ESCRI	TION	*	
Soil	24	l	SB-10	7.5	3		0	_	•	0 - 6" Black,						
<u> </u>	19	<u> </u>	0-2'	<u> </u>	6			-	l	6" - 2' Black,	silty - fine s	and; dry.				
ļ					12 19		1.	⊢	ł							
 	24	 		9.0	14		2	\vdash	l	2' - 4' Brown/	hlack silty.	medium sand	with 10% fi	ne oravel: da	firm	
Ī	20			""	20		[5.0110	u.u., unity		10/0 [1]	graver, dr)	,	
 					30		3									
l					34											
Soil	24		SB-10	23.7	54		4			4' - 6' Brown/	black, silty -	medium sand	with 10% fir	ne gravel; mo	ist, firm.	
	16	L	4'-6'	L	77											
1	i	ŀ			24		5	Ш								
<u> </u>	<u> </u>			42.0	19		اہ	`		C' O' Danier	black sitte					
l	24 17			13.9	27 30		6	\vdash		6' - 8' Brown/	olack, shty -	coarse sand;	wet, nrm.			
					24		7	_					-			
ļ	ļ				30											
<u> </u>	<u> </u>						8			End of boring	at 8 ft below	v ground surfa	ce. Borehol	e backfilled w	ith cement	grout.
									ş							
							9		3.11				į,			
													,			-
1							0	Н								
							1			· · · · · · · · · · · · · · · · · · ·						
											····					
							2	П								
							3									
				ŀ			4	-								
 				-	 		5	H					*			
]								\vdash								
							6	П								
L																
						•	7	Ш								
L								Ш				·				
							8	Ш								
	<u> </u>			\vdash				Н								
							9	Н					 			
 		 -					0	Н								
į .								H								
		L			L							**********				
NOTE	S:									Logged by:		Kevin M. Cal	dwell			
										Drilling Cont	ractor:	M & R Enviro	onmental			
										Driller:		Brad Haas, 1	William Willia	ims		
WELL	. SPECIF	ICA	TIONS:													
	een/Riser:				Scree	en Inter	val:				Sandpack:			Grout:		
Bottom					Riser	Interva	d:		-		Bentonite:			Cover.		

														T		
			EA Eng	in eri	na. Sci	ence		_		Job. No. 29600.60	Client:		, NAVFAC Davisville	Location:	FF	3S 28
		\	and T	echno	logy, l	nc.				Drilling Metho	od: B61 moi			Boring No.		·
										split barrel sa	mpler contir	nuously.]	S	B-11
		_	LOG O	F SOIL	. BORII	NG								1		
Coordi	nates:							_		Sampling Me	thod: 3" OD	split barrel s	ampler	 		·
_	e Elevation							_		driven by a 14).		eet 1	
VVell Ri	iser Eleva	tion:						-		Drilling Water Date	r Level	6 ft 19 June 97		Start 19 June 97	Drilling Times	Finish
										Time		09:40 AM		09:00 AM	Times	19 June 97 09:50 AM
										Surface Cond	litions: Gras					
Sample		Dpth		PID	Blows		Ft		USCS							
Туре	Driven/In. Recvrd	. Csg.	/ depth (ft)	(ppm) Above bk.	per 6"		bgs		Log			SOIL [DESCRI	PTION		
Soil	24	╁	SB-11	31.0	4	-	0			0 - 6" Black,	silty organic			.,,,,,		
	18	4	0-2'		11					6" - 2' Black,	silty - mediu	ım sand, dry,	loose.			
ł .		1			13 15		1	\vdash		<u></u>						
Soil	24	┼	SB-11	10.7	20		2		ŀ	2' - 4' Black,	silty - mediu	m sand with	10% medium	gravel; dry, k	oose.	
	14	1_	2-4'	<u> </u>	20				ŀ							
	1				7		3	\vdash								
 -	24	+	 	9.2	10		4	\vdash		4' - 6' Black,	silty - mediu	m sand with1	0% medium	gravel; moist.	2" laver o	f iron stained
	3				8					debris at 6 ft.					-	
					6 12		5	dash		<u> </u>						
 -	24	+-		5.8	31		6	H		6' - 8' Black s	silt with 10%	fine gravel: w	ret, 2" laver	of iron stained	debris at	5 ft.
<u> </u>	8	<u>L</u> _			19											
					18		7									
<u> </u>	<u> </u>	╁			15		8	H		End of boring	at 8 ft below	ground surfa	ce. Borehol	e backfilled w	ith cement	grout
<u>L</u>	<u> </u>		<u> </u>									J 00/10				5.000
							9	П				-				
/	 	\vdash	 				0	Н					· · · · · ·			
	<u> </u>															
1							1	Н						 _		
-	 	┼	<u> </u>		\vdash		2	Н								
	<u> </u>			L				d			·					
							3	Ц								
		\vdash					4	Н			·				····	
		L														
							5									
<u> </u>	 	+			 		6	$\vdash\vdash$								
L	<u>.</u>	L					J									
							7	Ц								
<u> </u>	 	\vdash			 		8	Н				 				
	[J	\vdash				·				
							9							· · · · · · · · · · · · · · · · · · ·		
	 	1						$\vdash \vdash$		•						
							0	Н						<u> </u>		
MOTE			<u></u>		<u></u>					Longod b		Kevin M. Cal	duroli			J
NOTE	J.									Logged by:						
										Drilling Contr	•	M & R Enviro				
										Driller:		Brad Haas,	William Willia	ms		
	SPECI		FIONS:		Sac.	en interv	val·				Sandnack:			Grout:		
Dia.Scri	een/Riser: of Hole:					en interv Interval					Sandpack: Bentonite:			Cover:		

											Treat or	O:: :	NO====	A141 (= -		
		_		EA E	ina	na Sci	0000				Job No. 29600.60	Client	NORDIV, NCBC D		Location. EBS 28	e
		A		EA Eng	echno:	ng, sci logy, li	erice, nc.				Drilling Metho	d: B61 moh			Boring No.	,
	Y,	7	\	and I	2210	·-=;, "				,	split barrel sa			ig a 3 OD	SB-12	:
				LOG O	F SOIL	BORII	NG			1			· - · · · · · · · · · · · · · · · · · ·	ę.	· - · -	
Coordin											Sampling Met					
Surface											driven by a 14				Sheet 1 of 1	
Well Ri	ser Ele	vatio	on:				······································		-		Drilling Water	Level	6 ft 19 June 97			inish
											Date Time		19 June 97			une 97 35 AM
											Surface Cond	itions: Gras			10.00 AW 10.	OO MINI
Sample	Inche	s	Dpth	Samp #	PID	Blows		Ft	Г	uscs						
	Driven		Csg.	/ depth	(ppm)	per		bgs		Log						
	Recv	rd		(ft)	Above bk.	6"			L	L				ESCRIF	PTION	
Soil	24			SB-12	28.5	1		0	Ĺ		0 - 6" Grey/bi					
	ļ	17		0-2'	 	7		1	 		6" - 2' Black, s	siny - mediur	m sand with 1	u% fine grav	el; dry, firm.	
	1	j				9		'	-							
	24	\dashv			31.9	3		2	\vdash		2' - 4' Black, s	silty - mediui	m sand with 2	0% medium	gravel; dry. 2" layer of iron sta	ined
·		6				6					wood chips in					
		7				6		3								
		_				11					4 0 5:	-114		201.5		
	24				18.9	10		4	-		4' - 6' Black, s	siny - mediu	m sand with 1	u% fine grav	el; dry.	
	<u> </u>	-3				10 15		5	\vdash							
		ı				12			\vdash							
Soil	24	7		SB-12	102	10		6			6' - 8' Black, 8	silty - mediur	m sand; wet.			
	ļ	8		6-8		30										
						15		7	\vdash					·-·		
						20		8	<u> </u>		End of boring	at 8 ft below	around surfa	ce Romboli	e backfilled with cement grout.	
		ļ							\vdash	1		T' O II DOIGH	ground Suita		s sacranes with cement grout.	
	<u> </u>	+	:					9		Ļ						
				i												
		1						0	<u> </u>						<u></u>	
	<u> </u>							1	\vdash							
		ı		,				'	H							
		┪						2	П							
		٦						3								
	ļ	-									<u> </u>		·			
		[\vdash		"	H		 		·			
	 	1						5	Г		· · · · · ·					
		T						6								
	ļ	4						_,	\vdash							
		1						7	 -							
	 	1						8	H						·	
									М							
	-	┪						9								
								0	<u> </u>		ļ					
L	<u> </u>			L		L					L					
NOTE	S:										Logged by:		Kevin M. Cal	dwell		
											Drilling Contr	•	M & R Enviro			
											Driller:		Brad Haas, 1	William Willia	ims	
			ICA	TIONS:		_						Od		ı		
Dia.Scn		_					en Inter Interva					Sandpack: Bentonite:			Grout:	

											Job. No.	Client:	NORDIV,	NAVFAC	Location:		
				EA Eng	ineeri	ng, Sc	ience,	,			29600.60		NCBC E	Davisville		E	3S 28
		N		and T	echno	logy, i	nc.				Drilling Metho			ng a 3" OD	Boring Na.	-	B-13
₹				LOG O	F SOII	BORI	NG				split barrel sa	mpier contin	luousiy.		1	3	D-13
												······································	- · 		1		
Coordii									_		Sampling Met						
Surface									_		driven by a 14					et 1	
VVell Ri	ser El	evati	on:						-		Drilling Water Date	Level	6 ft 19 June 97		Start 19 June 97	Drilling Times	Finish 19 June 97
									,		Time		11:20 AM		10:50 AM	, 11116-3	11:20 AM
L											Surface Cond	itions: Gras	is		<u> </u>		
Sample Type	Inch Drive		Dpth Csg.	Samp # / depth	PID (ppm)	Blows		Ft bgs	l	USCS Log	ł						
lype	Rec		Cay.	(ft)	Above bk.	per 6"		Lys		Log			SOIL D	DESCRI	PTION		
Soil	24			SB-13	10.2	1		0		 	0 -6" Brown	sity organic				·	
L	<u> </u>	17	<u> </u>	0-2	 	6]			ŀ	6" - 2' Brown,	silty - fine s	and; dry, loos	se.			
					Į	6 7	ł	1	\vdash		<u> </u>				···		
Soil	24		 	SB-13	15.2	3	1	2		l	2' - 4' Brown,	silty - mediu	ım sand; dry,	loose.			
		19		2'-4'	<u> </u>	3	l	l									
				,	l	3	}	3			<u> </u>			···			
 	24		 		9.1	7	1	4	\vdash	l	4' - 6' Brown	, silty - medi	um sand; drv.	, loose.			
<u></u>	Ĺ	14	L		<u> </u>	2	1			[
						2		5	\Box								
<u> </u>	24	_			5.7	3		6	Н		6' - 8' Brown,	silty - mediu	ım sand: wet.	loose			
		18			· · · · ·	2											
						3		7									
	<u> </u>		<u> </u>		<u> </u>	3		8	Н		End of boring	at R ft halow	oround surfa	re Borehol	a hackfilled	th comer*	amud
			ŀ			<u> </u>		ľ	H		End of boning	ER O IL DEIOW	ground Sulla		S DACKINEU W	ui cement	ALORE
								9	口								
		_	<u> </u>			<u> </u>		0	\vdash						- 		
1								U	H					·	• • • • • • • • • • • • • • • • • • • •		
								1									
			<u> </u>	ļi	 _			_	\square								
						-		2	\vdash								
			Г		 -			3									
			L														
		i						4			<u></u>	·					
								5	Н								
						<u> </u>		6	Н								
	<u> </u>		 					7	Н								
								8	Ш					· —			
	├	ᅱ	-					9	$\vdash \vdash$			-					
									H								
								0									
L	L								Ц			 					
NOTE	S:										Logged by:		Kevin M. Cal	dwell			
												•					
											Drilling Contr	actor:	M & R Enviro	nmental			······································
											Driller:		Brad Haas, \	Villiam Willia	ms		
		٠,-		70110								-				·····	
WELL Dia.Scre			ICA I	IUNS:		Sere	en Inter	val·				Sandpack:			Grout:		
Bottom		_					r Interva	-				Bentonite:			Cover:		
		-						-				-					

										Table 14	G: ·	Noces	\$141/F4.5	H		
			EA Eng	inacei	na Soi	onco				Job. No. 29600.60	Client:		NAVFAC Davisville	Location:	FP	S 28
	- 1				ng, sci logy, li						hod: B61 m	NCBC L nobile drill pus		Boring No		
		\	anu l	SCHILL	.vgy, II	110.					sampler con		ingas UD	poring No.	SI	3-14
			LOG O	F SOIL	BORII	NG				Spik barrer	aumpier con	itiriuousiy.		1	Ο.	,
														İ		
Coordi	nates:		_					_		Sampling M	lethod: 3" C	D split barrel	sampler			
Surface	e Elevation	1:						_				mer falling 30	in.		et 1	of 3
√Vell R	iser Elevat	ion:						-		Drilling Wat	ter Level	8 ft		Start	Drilling	Finish
										Date		20 June 97	ļ	20 June 97	Times	23 June 97
										Time		11:00 AM		07.00 AM		11:00 AM
C == 1	lash	D-4	E #	PID	Blows		Ft	_	uscs	ourrace Co	nditions: As	pnait		L		
S ample Type	Inches Driven/In.	Dpth Csg.	Samp # / depth	(ppm)	per		bgs	ľ	Log							
, , , , ,	Record	, J.J.	(ft)	Above bk.	6°		253	1				SOIL	DESCRI	PTION		
Soil	24	 	SB-14	11.6	5	$\vdash\vdash\vdash$	0	 	 	0 - 6" Asph	alt pavemer					
1	21	1	0-2'		8				1			dium sand w	ith 5% fine gr	avel; dry, loo	se.	
		Г	T		16		1									
		<u>L</u>		<u> </u>	19				1							
	24		[18		2	-	ĺ	2' - 4' Brow	n, silty - me	dium sand wi	th 5% fine gr	avel; dry, firm		
	14	├	<u> </u>	22.6	10		3	\vdash								
		1	l		16 15		3	H		 						
	24	\vdash	 	-	19		4	-		4' - 6' No re	ecovery.	·	 ,			
	0	1	i		10		,									
		†			5		5		I							
L					4											
	24	1	1		2	} }	6	Ш		6' - 8' No re	ecovery.					
	0	 	ļ		3		_							· · · · · · · · · · · · · · · · · · ·		
]	1			3		7	⊦⊣								
Soil	24	├	SB-14	22.2	3	ĺĺ	8	H		8' - 10' Blad	ck, medium	- coarse sand	with 50% fin	e - medium a	ravel: wet	Some wood
3011	4	1	8'-10'		4						ebris in sam		2070 181	y		J 11000
	† <u></u>		1		5		9		[:							
L					3	Ì										
7	24	10		19.7	2		10	Щ		10' - 12' Bla	ack, medium	- coarse gra	vet and coars	e sand; wet,	oose.	
	3	 	}		4			Н								
	l	1	ł		4 3		11	\vdash								
 	24	10	 	21.1	3		12	\vdash		12' - 14' Bla	ack medium	- coarse san	d; wet, loose.			
ŀ	9		1		2	[
					2		13									
		<u> </u>		L	4											, i
	24	10	1	16.8	8		14	Ь.,		14' - 16' Bla	ack silt with t	few wood chip	os; wet.			
<u> </u>	3	 		ļ	- B	1	4.5						····			
I]	1	1]	20 18		15	H								
 	24	16		212	19		16	Н		16' - 18' Bla	ack silt; wet.					
ŀ	24	1			22											
					20		17									
		L_		<u> </u>	18			Щ								
l	24	16		3.5	8		18	Щ		18' - 20' Bla	ack, silty - m	edium sand;	wet.			
<u> </u>	3	 		ļ	10			Щ								
		1	1		9		19	\vdash								
 -		╂	 				20	Н								
	ļ		1	1			20	Н			•			·		
	<u> </u>		<u> </u>	L	-										-=	
NOTE	S:									Logged by:	:	Kevin M. Cal	ldwell			
										B-98 - 5	·•	14.0.5.5				
										Drilling Cor	ntractor:	M & R Enviro	nmental			
										Driller:		Brad Haas,	William Willia	ms		
										Jiniei.	•	J. 44 1 1443,	TAULGITI VVIIII			
WELL	. SPECIF	FICA'	TIONS:													
	een/Riser:				Scre	en Interv	val:			;	Sandpack:			Grout:		
Bottom						Interva					Bentonite:			Cover:		

										Job. No.	Client:	NORDIV,	NAVFAC	Location:		
I			EA Eng							29600.60		NCBC E			EB	S 28
			and T	echno	logy, l	nc.				Drilling Met	hod: B61 m	obile drill pus	hing a 3" OD	Boring No.		
ł									}	split barrel	sampler con	tinuously			SE	3-14
			LOG O	FSOIL	BORII	NG					. _					
										Camplia a A	4-45-4. 08 6	OD sells bessel				
Coordin	nates: e Elevation											OD split barrel mer falling 30		She	et 2	of 3
	ser Elevati							•		Drilling Wat		8 ft		Start	Drilling	Finish
940011	301		· · · · · · · · · · · · · · · · · · ·							Date		20 June 97		20 June 97	Times	23 June 97
										Time		11:00 AM		07:00 AM		11:00 AM
										Surface Co	nditions: As	phalt				
Sample	Inches	Dpth	Samp #	PID	Blows		Ft		USCS							
Туре	Driven/In.	Csg.	/ depth	(ppm)	per		bgs	l l	Log			COIL		DTION		
	Recvrd		(ft)	Above blt.	6"		20	Н		00' 00' B			DESCRI			
	24 24	16		10.4	12 12		20	Н		20 - 22 8)	aciogrey, sa	ty - medium s	ano; wet, rim	1.		
					13		21	Н						· · · · · · · · · · · · · · · · · · ·		
				i i	12							······				
	24			2.1	7		22			22' - 24' BI	ack, silty - m	nedium sand v	vith a layer of	bl;ack silt at	bottom of s	poon; wet.
	12	22			10											
					12		23	Ш								
	<u></u>				12		اررا	Ш		0.0 55: 5		- th F -				
	24	22		2.3	12		24	\vdash		24' - 26' Ba	ands of black	k silt, fine grav	el and mediu	ım - coarse s	and; wet.	
	15		-		24		25	\vdash								
l					32											
	24	22		2.6	30		26	_		26' - 28' 6"	layer of coa	rse sand on to	op of black si	lt; wet.		
	15				30											
					17		27						-			
					12											
	24	26		0.0	5		28			28' - 30' Bl	ack silt with	trace clay; we	t, loose.			
	18				5 7		29									
:					7								 -			
	24	28		0.2	11	1	30			30' - 32' Bi	ack silt with	trace clay with	a layer of co	parse sand at	bottom of	spoon; wet.
	16				12											
					20		31									
					23			_		201 241 D						
ĺ	24 15	32		0.2	17 32		32			32 - 34 Br	own weathe	red rock and o	coarse sano;	wet, firm.		
	13	Н			68		33									
					48	1										
	24	32		0.1	25	ł	34					red rock and o	coarse sand	on top of blac	k silt	
	18				19 20		35	-			ay; wet, firm on 20 June					
					34		50	\vdash			25 00110					
	24	36		16.0	9		36			36' - 38' Bla	ack, silty - m	edium sand; v	vet, firm.			
	13	ļļ			11											
					15 10		37	\dashv								
	24	36		3.1	16		38	\dashv		38' - 40' Bla	ack, silty - m	edium sand; v	vet, firm. So	me iron staini	ng present	
	24				20											
					25		39									
		\square			38		40						·			
							**□									
NOTE	 S:									Logged by:		Kevin M. Cal	dwell			
										Drilling Co	ntractor:	M & R Enviro	nmental			
										Driller:		Brad Haas,	William Willia	ms		
VA/CI)	SPECIF	IC A T	IONe.													
	en/Riser	10A1	,0110.		Serne	en Interv	/al·				Sandpack:			Grout:		
Bottom						Interval	-				Bentonite		-	Cover:		

										Job. No.	Client:		NAVFAC	Location		20.00
			EA Eng							29600.60	hod: Be4 =		Davisville	Porios N-	E	3S 28
			and I	Techno	rogy, I	iic.					hod: B61 m sampler cor	nobile drill pus	ning a 3" OD	ROUNG No.	S	B-14
			LOG O	F SOIL	BORI	NG									•	
										0		20				
Coordi	nates: e Elevation	ı :		·				-				OD split barrel mer falling 30		She	eet 3	of 3
	ser Elevati							-		Drilling Wat		8 ft		Start	Drilling	Finish
								-		Date		20 June 97		20 June 97	Times	23 June 97
										Time Surface Co	A A -	11:00 AM		07:00 AM		11:00 AM
Sample	Inches	Dpth	Samp #	PID	Blows		Ft	Т	uscs	Surface Co	numons: As	врпак -				
	Driven/In.		/ depth	(ppm)	per		bgs		Log							
	Recvrd		(ft)	Above bk.	6"								DESCRI	PTION		
	24	39		0.7	9		40	F		40' - 42' Bia	ack, silty - n	nedium sand;	wet			
	18	-		 	19 27	ł	41	-	ł							
				i	356	1			j						,	
Soil	24		SB-14	1.2	90	1	42]			edium sand;	wet. Broken	rock in last		
	9	 	42'-44'		110	}	43	-		3 in of spoo		Borehole bad	kfilled with		-	
			1		l		~		1	cement gro		Joseph Par		<u></u>		·
							44									
				L		1	5	<u> </u>								
				ŀ			,	H								
							6									
		<u> </u>				1 1		_								
'	ļ						7	 								
							8									· · · · · · · · · · · · · · · · · · ·
							ا									
							9	-			-					
		 					0									
						l										
						l	1	 			-					···
			l				2									
							3	\vdash			·	· · · · · · · · · · · · · · · · · · ·				
		<u> </u>					4	Н		····						
		Ĺ								1						
					 		5	\vdash								
		$\vdash \vdash$			ļ		6	\vdash								
												······································				
							7	\vdash								
		-					8	Н								
							9	П				·				
		\vdash					0	Н					 			
							١	H						. ,		
NOTE	S:		<u> </u>					لبيد	•	Logged by:		Kevin M. Cal	dwell		P	: .
		•								Drilling Con	•	M & R Enviro				
										-	•					······································
										Driller:		Brad Haas, 1	villiam Willia	ms		
	SPECIF	ICAT	TIONS:													
	en/Riser.					en Inter	-				Sandpack:			Grout:		
II attam.	of Hole:				Riser	r Interval	t:			F	Bentonite:			Cover		

								_		Job. No.	Client:	NORDIV,	NAVFAC	Location:		
		\	EA Eng	ineeri	ng, Sc	ience	,			29600 60	Ļ <u>.</u>		Davisville		EE	S 28
			and T	echn	l gy, l	nc.				Drilling Metho			ng a 3" OD	Boring No.		3-15
			LOG O		BUBI	NG				split barrel sa	impler contir	luously.		-	31	D-10
			LUG U	JUIL	. DUKI	140								1		
Coordi	nates:									Sampling Me	thod: 3" OD	split barrel s	ampler			
Surface	e Elevatio	on:								driven by a 1				She		of 2
VVell R	iser Elev	ation:								Drilling Water	Level	6 ft		Start	Drilling	Finish
										Date Time		23 June 97		23 June 97	Times	24 June 97
j										Surface Cond	litions: Gras	02:00 PM		02:00 PM		11:30 AM
Sample	inches	Dpth	Samp #	PID	Blows	1	Ft	1	uscs					<u> </u>		
Туре	Driven/I		/ depth	(ppm)	рег		bgs	ļ	Log	ļ						
	Recvro		(ft)	Above bk.	6"	<u> </u>		L		L			ESCRIF	PTION		
Soil	24		SB-15	0.0	2		0	L		0 -1" Brown, s						
	<u></u> '	0	0 - 2'		8	ł	١,	├	l	1" - 2' Brown,	sity sand w	th 25% medit	ım gravel; dr	у.		
		ł			2	1	·	┢	Í							
	24	 		1.3	1		2			2' - 4'Dark bro	wn/black or	ganic materia	l; dry.			
		2		.	3											
]					2		3	<u> </u>								
<u> </u>	24	+	 	3.3	4		4	H		4' - 6' Brown/t	olack silty sa	ind: drv.				
	B .	6		"-	5	1	,	Н		1 0 0.0,	old dirty de					
 			1		6		5									
<u></u>	<u> </u>				2											
	24	٦	l	0	3 6		6	<u> </u>		6' - 8' Brown,	silty - medi	ım sand; wet.			<u> </u>	
		-			4		7	\vdash								
			1	1	2			\vdash								
	24	1		2	5		8			8 - 10 Brown.	, fine - medi	ım sand; wet.				
<u> </u>	1	2			5			Ш								
				ł	7		9	\vdash	·							
-	24	┪		1	8		10	\vdash		10' - 12' Brow	n, fine - me	dium sand; we	et.	 		
	_ 1	2			8											
			·		8		11	Щ								
 	24	╂		3.0	9		12	Н		12' - 14' Brow	n fine - me	dium sand: we	ot .			
	2 2	4		5.0	12		'-	Н		12 14 BION	m, mic mic	arom samo, m	-			
	1				11		13		•							
					12								·			
	24			0.5	19		14		i	14' - 16' Brow	n, fine - coa	rse sand with	50% mediur	n gravel; wet.	<u>.</u>	
	1	' 	 	!	107 37		15	Н								
					50											
	24			0.0	66		16			16' - 18' Brow	n, fine - me	dium sand wit	h 50% medit	ım - coarse g	ravel; wet.	
<u> </u>	2	4	 	<u> </u>	43		4-7	Н						·····		
					69 67		17	-		•					·	
	24	╅┈		0.0	21		18	Н		18' - 20' Brow	n, fine - med	ium sand with	50% mediu	m - coarse gr	avel; wet	
L		9			20											
					9		19									
	 			<u> </u>	8		20	Н							·	
	l				├		20	Н								
NOTE	 S:				<u></u>					Logged by:		Kevin M. Cal	dwell			
										Drilling Cont	ractor:	M & R Enviro				
										Driller:	•	Brad Haas, \	Villiam Willia	ms		
	05=0		TIONS								•					
			TIONS:		Care	na letan	ual:				Sandnack:			Growt		
Dia.Scr Bottom	een/Rise	·				en Inten Interva	-				Sandpack: Bentonite:			Grout: _ Cover:		
	J. 1 1016.															

	·			EA Eng and T		ng, Sc ology, I		,		,	Job. No. 29600.60 Drilling Metho split barrel sa		NCBC I	NAVFAC Davisville ing a 3" OD	Location: Boring No.		S 28 3-15
			;	LOG O	F SOIL	. BORI	NG			•				į		0.	J- 10
Coordi									-		Sampling Met						
Surface									•		driven by a 14 Drilling Water		er falling 30 in), 	Start	eet 2	
1	1961 -	CVUU	····						•		Date	Level	23 June 97		23 June 97	Drilling Times	Finish 24 June 97
											Time		02:00 PM		02:00 PM	11/105	11.30 AM
											Surface Cond	litions: Gras	s				
Sample			Dpth		PID	Blows		Ft		USCS							
	Drive Rec		Csg.	(ft)	(ppm) Above bk.	per 6"		bgs		Log				DESCRIF			
Soil	24	24	18	1	0.0	8 20	,	20	┡	ŀ	20' - 22' Brow	vn/black, coa	arse sand; we	et. Black silt	with coarse g	ravel in last	3" of spoon.
├	├─	24	-			40		21	⊩		ļ						
ł	1					49			H							 	
	24		22		0.0	20		22			22' - 24' Black	c, silty - coan	se sand with	50% coarse	gravel.		
	 	14	<u> </u>			54											
	l		ŀ	i		65 50		23	H		****						
	24		22		0.4	23		24	-		24' - 26' Blaci	k silt wat fir					
		16			J.,	30		-	-		24 20 0100	K day week in					
						54		25									
						22											
	24	40			0.0	11		26			26' - 28' Black	k silt; wet, fir	m.				
		12				8		27	\vdash		}						
						10		-'									
	24				0.2	7		28			28' - 30' Blad	ck silt, wet, f	irm.				
		12				8											
						19 27		29	<u> </u>								
Soil	24	\dashv		SB-15	0.2	19		30	\vdash		30' - 32' Blad	ck silt; wet, f	irm				
0	<u> </u>	11		30'-32'		42						G. C. C. T.				·	
		\Box				107		31									
						53		00			001 041 5 11	1.25.05					
								32			32' - 34' Rolle	erbit through	rock.				
	<u> </u>	\neg						33			·					·	
								1									
								34			End of boring	at 34 ft belov	w ground sur	face. Boreho	le backfilled	with cemen	t grout.
								15									
								16									
ļ	 -	\dashv	-					17	-				· · · · · · · · · · · · · · · · · · ·				
	L	1					1										
							- 1	18									
							I	19						· · · · · · · · · · · · · · · · · · ·			
							ł	· "	-								
		\neg					ı	20									
		1		1				i									
NOTE	S:										Logged by:	-	Kevin M. Cal	dwell			
											Drilling Contr	actor:	M & R Enviro	nmental			
											Driller:	_	Brad Haas,	Villiam Willia	ms		
WELL			ICA1	TIONS:													
Dia.Scre		_					n Inter	_				Sandpack:			Grout:		
Bottom (of Hole	:: _				Riser	Interva	l: _			E	Bentonite:			Cover:		

										Link Ma		Money	1/41/510	1		
		_	EA En-	nina =	na Sai	ionco				Job No. 29600.60	Client:		NAVFAC	Location:	ED	S 28
			EA Eng	jine (II Jechn	ng, sci logy, l	nc				Drilling Metho	od: R61 mot		Davisville	Boring No.	ED	<u>5 20</u>
	M	7	and i	COM	iogy, i	110.				split barrel sa			ilg 3 OD	Boring No.	SE	B-16
P4			LOG O	F SOII	BOBII	NG				opin Daries Sa	mpier condi	woudit.		1	OL	, 10
				. JUIL	. DUNII					——				1		
Coordi	nates:									Sampling Me	thod: 3" OD	split barrel sa	ampler		-	
1 -	e Elevat	ion:						•		drivenby a 14			•	She	et 1 d	of 1
VVeil R	iser Ele	ation:						-		Drilling Water	Level	14 ft		Start	Drilling	Finish
ŀ								-		Date		24 June 97		24 Jun 97	Times	24 Jun 97
1										Time		01:00 PM		12:30 PM		01:30 PM
						,		_		Surface Cond	litions: Gras	s		<u></u>		
Sample	l l	1 '		PID	Blows	[[Ft	1	uscs							
Type	Driven/	1 -	/ depth	(ppm)	per		bgs		Log			SOII F	ESCRI	OTION		
	Recvi	<u> </u>	(ft)	Above bk.	6"		0	-	 	0 2 Cm 5	no modium			HUN		
-Soil	24	14	SB-16 0 - 2'	0.7	3		υ	 	l	0 - 2' Grey, fir	ie - inealum	Sanu, dry, 100	75G.		-	
	1	-	13-2		6		1	\vdash	l							
ļ		1	1	l	6] }	•	\vdash	j	 	-					
<u> </u>	24	_	T^-	0.2	6		2			2' - 4' Grey, fir	ne - medium	sand; dry, lo	ose.			
L_	<u>L</u>	18	<u></u>		6											
Γ					6		3		l							
<u></u>	<u> </u>	┷	<u> </u>		5			<u> </u>	l	<u></u>						
Ì	24			0.2	<u>6</u>	li	4	L		4' - 6' Grey, fir	ne - medium	sand; dry, loc	ose. Rust co	lored gravel in	last 2" of s	poon.
<u> </u>	 	19	 	ļ	6 12		5		l	<u> </u>			· · · · · · · · · · · · · · · · · · ·			
1	ł				12		5	\vdash	I	 						
	24	+	1	0.3	13		6	H		6' - 8' Grey, c	coarse sand	with 10% fine	gravel: drv			
		16			13		_	Н					J ,			
	T				14	}	7		Ì							
L	<u>L</u>		<u> </u>		12		!		Ì							
	24			0.8	10		8		,	8' - 10' Grey,	medium - co	arse sand; dr	у.			
		18	L	<u> </u>	10		_	Н			••					
	Ī		ł		5		9	Н						·····		
}	24			1.8	5		10	Н		10' - 12' Grey	, medium - c	oarse sand w	rith 10% fine	gravel: drv		
1		17	l		5				1					J 41 J.		
		T		l	6		11								-	
<u></u>	<u> </u>		L		3											
	24			0.9	10		12	Ш		12' - 14' Grey	, medium - c	coarse sand w	ith 10% fine	gravel; dry.		
<u></u>	 	18	 	 	11		40			<u> </u>		·]
	ł				11 12		13	Н								
Soil	24	+	SB-16	1.4	8		14	Н		14' - 16' Grey	. medium - c	parse sand w	rith 10% fine	utavel. wet		
		16	14'-16'	''-	10]	, -	Н			,		10/0 11/0	g. u. c., 11CL		
 		1-			8		15				-					
			·		8											
	24			0.9	8		16			16' - 18' Grey	, medium - c	oarse sand w	ith 10% fine	gravel; wet.		
<u></u>	<u>} </u>	24	ļ	<u></u>	8			Ш								
					11		17	Щ								
ļ	_	╂			8		40	$\vdash \vdash$		End of boring	at 18 ft hales	w non-ind	ana Barin-	hackfilled!		
ĺ	I	ſ]		\vdash		18	Н		THE OF BOILING	at 10 It DelDI	a ground sum	ace. Bunng	DACKIIIEG WITH	cement gro	iut.
	╁┈╌						9	\vdash								
	l	1	j					Н				·				
		T-					0				 		•			
ŀ	Í	l														
NOTE	.s.	•								Logged by:		Kevin M. Cal	riwell			
HOIE	.J.										-				<u> </u>	
										Drilling Contr	ractor:	M & R Enviro	nmental			
1										Driller:	-	Brad Haas, \	Milliam Willia	ıms		
WFI	SPEC	IFICA	TIONS:													·
	een/Rise				Scree	en Interva	al.				Sandpack [.]			Grout:		
	of Hole:				Riser	Interval:	: •				Bentonite:			Cover:		

EBS Follow-on Investigation NCBC Davisville RI

Review Item	Location	Sample Number	Date Collected	SDG#	Matrix	Compounds Analyzed
15	Building S-112	EBS-15-RSS-50	6/27	970938	soil	TPH 418.1, 8015M, VOC, SVOC
15	Building S-112	EBS-15-RSS-51	6/27	970938	soil	TPH 418.1, 8015M, VOC, SVOC
15	Building S-112	EBS-15-RSS-01	1/2	970965	soil	TPH 418.1,8015M VOC, SVOC
15	Building S-112	EBS-15-RSS-02	7/2	970965	soil	TPH 418.1,8015M VOC, SVOC
15	Building S-112	EBS-15-RSS-03	7/2	970965	soil	TPH 418.1,8015M VOC, SVOC
15	Building S-112	EBS-15-RSS-04	7/2	970965	soil	TPH 418.1, VOC, SVOC
15	Building S-112	EBS-15-RSS-06	7/2	970965	soil	TPH 418.1,8015M VOC, SVOC
21	DC-133	EBS21-NSS-01	7/17	971072	ground water	VOC, SVOC TPH 418.1
21	DC-133	EBS21-NSS-02	7/17	971072	ground water	VOC, SVOC TPH 418.1
21	DC-133	EBS21-GW-1	7/16	971050	ground water	voc,svoc
21	DC-133	EBS21-GW-2	7/16	971050	ground	voc,svoc
21	DC-133	EBS21-GW-3	7/16	971052	ground water	VOC, SVOC
22	New DRMO Laydown Area	EBS-22-RSB-01- O-2'	6/27	970938	soil	TPH 418.1, VOC, SVOC
22	New DRMO Laydown Area	EBS-22-RSB-01- 2-4	6/27	970938	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28-GW-1	7/17	971071	ground water	VOC, \$VOC

EBS Follow-on Investigation NCBC Davisville, RI

Review Item	Location	Sample Number	Date Collected	SDG #	Matrix	Compounds Analyzed
28	Creosote Dip Tank Area	EBS-28-GW-2	7/17	971071	ground water	VOC, SVOC
28	Creosote Dip Tank Area	EBS28-SS-01	7/1	970965	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-01-0-2'	6/17	970886	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-01-8'-10'	6/17	970886	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-02-0-2'	6/18	970886	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-02-8'-10'	6/18	970886	soil	TPH 418.1,8015M VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-03-0-2'	6/18	970886	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-03-6'-8'	6/18	970886	soil	TPH 418.1,8015M VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-04-0-2'	· 6/18	970886	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-04-2'-4'	6/18	970886	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-05-0-2'	6/18	970886	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-05-6'-8'	6/19	970894	soil ·	TPH 418.1, VOC, SVOC TPH8015M
28	Creosote Dip Tank Area	EBS-28- SB-06-0-2'	6/18	970886	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-06-8'-10'	6/19	970894	soil	TPH 418.1, VOC, SVOC TPH8015M

EBS Follow-on Investigation NCBC Davisville, RI

Review Item	Location	Sample Number	/ Date Collected	SDG#	Matrix	Compounds Analyzed
28	Creosote Dip Tank Area	EBS-28- SB-07-0-2'	6/18	970886	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-07-2'-4'	6/18	970886	soil	TPH 418.1, VOC, SVOC TPH8015M
28	Creosote Dip Tank Area	EBS-28- SB-08-0-2'	6/18	970894	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-08-2'-4'	6/18	970894	soil	TPH 418.1, VOC, SVOC TPH8015M
28	Creosote Dip Tank Area	EBS-28- SB-09-0-2'	6/18	970894	soil	TPH 418.1, VOC, SVOC, TPH 8015M
28	Creosote Dip Tank Area	EBS-28- SB-09-2'-4'	6/18	970894	soil	TPH 418.1, VOC, SVOC TPH8015M
28	Creosote Dip Tank Area	EBS-28- SB-10-0-2'	6/19	970894	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-10-4'-6'	6/19	970894	soîl	TPH 418.1, VOC, SVOC
· 28	Creosote Dip Tank Area	EBS-28- SB-11-0-2'	6/19	970894	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-11-2'-4'	6/19	970894	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-12-0-2	6/19	970894	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-12-6'-8'	6/19	970894	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-13-0-2'	6/19	970894	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-13-2'-4'	6/19	970894	soil	TPH 418.1, VOC, SVOC

EBS Follow-on Investigation NCBC Davisville, RI

Review Item	Location	Sample Number	Date Collected	SDG#	Matrix	Compounds Analyzed
28	Creosote Dip Tank Area	EBS-28- SB-14-0-2'	6/20	970894	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-14-2'-4'	6/20	970894	soil	TPH 418.1, VOC, SVOC
, 28	Creosote Dip Tank Area	EBS-28- SB-14-42'-44'	6/23	970904	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-15-0-2'	6/23	970904	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-15-30'-32'	6/24	970904	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-16-0-2'	6/24	970904	soil	TPH 418.1, VOC, SVOC
28	Creosote Dip Tank Area	EBS-28- SB-16-14'-16'	6/24	970904	soil	TPH 418.1, VOC, SVOC
30	Laydown Area	EBS-30-RSB-01- 0-6"	6/27	970938	soil	TPH 418.1, VOC, SVOC
30	Laydown Area	EBS-30-RSB-01- 2-4 (Dupe of 0-6*)	6/27	970938	soil	TPH 418.1, VOC, SVOC
31	Old DRMO Scrapyard	EBS31-RSS-11	7/1	970965	soil	TPH 418.1, VOC, SVOC
31	Old DRMO Scrapyard	EBS-31-RSS-02	6/27	970938	soil	TPH 418.1, VOC, SVOC
31	Old DRMO Scrapyard	EBS-31-RSS-06	6/27	970938	soil	TPH 418.1, VOC, SVOC
31	Old DRMO Scrapyard	EBS-31-RSS-07	6/27	970938	soil	TPH 418.1, VOC, SVOC
31	Old DRMO Scrapyard	EBS-31-RSS-09	6/27	970938	soil	TPH 418.1, VOC, SVOC, TPH 8015M
31	Old DRMO Scrapyard	EBS-31-RSS-12	6/27	970938	soil	TPH 418.1, VOC, SVOC

EBS Follow-on Investigation NCBC Davisville, RI

Review Item	Location	Sample Number	Date Collected	SDG#	Matrix	Compounds Analyzed
31	Old DRMO Scrapyard	EBS-31-RSS-13	6/27	970938	soil	TPH 418.1, VOC, SVOC
34	Building 314	EBS34-RSPT-01	7/17	971063	soil	TPH 418.1,8015M, VOC, SVOC RCRA Metals
34	Building 314	EBS34-RSPT-02 (DUP OF 01)	7/17	971063	soil	TPH 418.1,8015M, VOC, SVOC RCRA Metals
44	Former Building A-89	EBS44-RSPT-01	7/15	971052	soil	TPH 418.1,8015M, VOC, SVOC RCRA Metals
45	Buildings 31, 67, and 68	EBS45-RSPT-01	7/15	971052	soil	TPH 418.1,8015M, VOC, SVOC RCRA Metals
51	Building S-101	EBS-51-GW-1	7/15	971050	ground water	VOC
51	Building S-101	EBS-51-GW-2	7/15	971050	ground water	voc
51	Building S-101	EBS-51-GW-3	7/15	971050	ground water	.voc
51	Building S-101	EBS-51-GW-4	7/15	971050	ground water	voc
54	Building 378	EBS-54-RSPT- 01	7/14	971023	soil	TPH 418.1, TPH 8015M, VOC, SVOC RCRA Metals
56	Building 224	EBS-56-RSPT- 01	7/14	971023	soil	TPH 418.1, TPH 8015M, VOC, SVOC, RCRA Metals
56	Building 224	EBS-56-RSPT- 02	7/14	971023	soil	TPH 418.1, TPH 8015M, VOC, SVOC, RCRA Metals
57	Building 39	EBS-57-RSPT- 01	7/14	971023	soil	TPH 418.1, TPH 8015M, VOC, SVOC, RCRA Metals
58	Building E-319	EBS58-RSPT-01	7/17	971063	soil	TPH 418.1,8015M, VOC, SVOC RCRA Metals

Appendix B-2

Review Item 28 (UST Area)

Magnetometer Survey Report

FINAL MAGNETOMETER SURVEY REPORT EBS REVIEW ITEM 28, CREOSOTE DIP TANK AREA NAVAL CONSTRUCTION BATTALION CENTER DAVISVILLE, RHODE ISLAND

1

Contract No. N62472-92-D-1296 Contract Task Order No. 0060

Prepared for

Department of the Navy, Northern Division Naval Facilities Engineering Command 10 Industrial Highway, Mail Stop No. 82 Lester, Pennsylvania 19113-2090

Prepared by

EA Engineering, Science, and Technology Sharon Commerce Center 2 Commercial Street Sharon, Massachusetts 02067

CONTENTS

		<u>Pa</u>	ge
LIST	OF FIG	URES	
LIST (OF TAI	BLES	
1.	INTRO	ODUCTION	-1
	1.1	Description of the Base	-1
	1.2	EBS Review Item 28: Creosote Dip Tank Area	-1
	1.3	Scope of Work	-2
	1.4	Survey Objectives	-2
2.	SCOP	E OF SURVEY	-1
	2.1	Procedure and Data Acquisition 2-	-1
		2.1.1 Magnetometer Survey	-1
	2.2 2.3	Site Conditions Observed During the Survey	
		2.3.1 Survey West of Building E-107, Pump Island Area	
3.	SUMM	1ARY AND CONCLUSIONS 3-	-1
	3.1 3.2	Pump Island Area 3- Building E-107 3-	

REFERENCES

LIST OF FIGURES

<u>Number</u>	<u>Title</u>		
1-1	Site Locus Map		
1-2	Site Sketch		
1-3	Site Sketch, Magnetometer Survey Pump Island Area		
1-4	Site Sketch, Magnetometer Survey Building E-107		
2-1	Magnetometer Survey Data Pump Island Area, Line 1		
2-2	Magnetometer Survey Data Pump Island Area, Line 2		
2-3	Magnetometer Survey Data Pump Island Area, Line 3		
2-4	Magnetometer Survey Data Pump Island Area, Line 4		
2-5	Magnetometer Survey Data Pump Island Area, Line 5		
2-6	Magnetometer Survey Data Pump Island Area, Line 6		
2-7	Magnetometer Survey Data Building E-107, Line 1		
2-8	Magnetometer Survey Data Building E-107, Line 2		
2-9	Magnetometer Survey Data Building E-107, Line 3		
3-1	Site Sketch, Magnetometer Survey Pump Island Area		
3-2	Site Sketch, Magnetometer Survey Building E-107		

LIST OF TABLES

Number	<u>Title</u>
1	Review Item 28, Pump Island Area Magnetometer Survey
2	Review Item 28, Building E-107 Magnetometer Survey

1. INTRODUCTION

EA Engineering, Science, and Technology (EA) was authorized to perform a magnetometer survey for Review Item 28 under Contract No. N62472-92-D-1296, Northern Division, Naval Facilities Engineering Command Contract Task Order (CTO) No. 0060 at the Naval Construction Battalion Center, Davisville, Rhode Island (NCBC Davisville). This task of the CTO consisted of:

• Performance of a Magnetometer Survey in the vicinity of Building E-107 and the pump island area located to the west of Building E-107 to evaluate the three tanks reportedly located in the pump island area and one tank reportedly located at the southeast corner of Building E-107 (Figure 1-2).

This report presents the results and findings of the Magnetometer Surveys.

1.1 DESCRIPTION OF THE BASE

NCBC Davisville is located in the Town of North Kingstown, Rhode Island, approximately 18 miles south of the state capitol, Providence. A significant portion of NCBC Davisville Main Center is adjacent to Narrangansett Bay. NCBC Davisville is composed of three areas: the Main Center; the West Davisville storage area; and Camp Fogarty, a training facility located approximately four miles west of the Main Center (Figure 1-1). Adjoining NCBC Davisville Main Center's southern boundary is the decommissioned Naval Air Station (NAS) Quonset Point, which was transferred by the Navy to the Rhode Island Port Authority (RIPA) in April 1973 (TRC 1994).

NCBC Davisville was primarily used for training naval seamen in construction operations, and as storage and freight yards for construction materials. As a result, the NCBC is comprised primarily of warehouse space and freight yards, most of which are currently empty. In 1974, the NAS and the Naval Air Rework Facility (NARF) at Quonset Point were decommissioned, and operations at Davisville were greatly reduced pursuant to the Shore Establishment Realignment Act of 1973. In 1989, NCBC Davisville was added to the National Priorities List (54 Federal Register 48184, 1989). In 1991, the closure of NCBC Davisville was announced, and operations were phased down to minimum staffing levels for public works, maintenance and security (EA 1995). NCBC Davisville closed on 1 April 1994. Most of the staff and materials have been moved offsite. Currently, facilities management and security staff engaged with base closure remain on base.

1.2 EBS Review Item 28: Creosote Dip Tank Area

EBS Review Item 28 is located in Zone 3 of NCBC Davisville (Figure 1-1). The Review Item consists of one Building (E-107) and the area west and south of the building including an area possibly used for creosote dipping activities (Figure 1-2). Halliburton NUS (1992) conducted a soil removal action in a spill area around an upended creosote dip tank.

A fire training area was also recently reported to have been located in an asphalt-paved area to the east of the former dip tanks (Figure 1-2). During the 1960's, structures were allegedly constructed, doused with oil, then set on fire to be extinguished. The area was reportedly paved over.

Four underground storage tanks are reported to have been located near Building E-107. Three of the tanks are reported to have been located to the west of Building E-107 (in the pump island area) and 1 tank is reported to have been located at the southeast corner of the building (Figure 1-2).

1.3 SCOPE OF WORK

A magnetometer survey was conducted in the area of the alleged underground storage tanks to the west of Building E-107 (in the area around the pump island) and at the southeast corner of the building. A grid was established in a 100 by 120 ft area with the pumping island near the center of the grid (Figure 1-3). An appropriate grid spacing was established (20 ft by 20 ft spacing) which was determined appropriate given the target size and depth and the type of magnetometer used. When anomalies were detected, a stake was placed at the locations for further investigation through test pit excavation at a later date. A smaller grid (30 by 90 ft) was established on the southeast side of E-107 to look for anomalies that may be associated with buried tank (Figure 1-4).

1.4 SURVEY OBJECTIVES

The purpose of these surveys is to identify magnetic anomalies that may be associated with the underground storage tanks or connective piping.

2. SCOPE OF SURVEY

In June 1997, a Magnetometer Survey was conducted in the area of the alleged underground storage tanks to the west of Building E-107 (in the area around the pump island) and at the southeast corner of the building.

A grid was established in a 100 by 120 ft area with the pumping island near the center of the grid (Figure 1-3). An appropriate grid spacing was established (20 ft by 20 ft spacing) taking into account the target size and depth and the type of magnetometer used. The lines were trending from west to east along a grass covered area located west of Building E-107. Line 1 was located furthest south, Line 6 was furthest north. Each line began at Position 0 and extended to Position 120 toward the east with readings taken every 20 ft.

A smaller grid (30 by 90 ft) was established near Building E-107 to look for anomalies that may be associated with the alleged buried tank (Figure 1-4). Three lines were used on the southeastern side of the building extending from west to east. Each line was 90 ft long and magnetometer readings were taken at 15 ft position intervals.

2.1 PROCEDURE AND DATA ACQUISITION

A Geometrics G856AX Extended Memory Proton Procession Magnetometer was used to conduct the survey. This instrument is capable of measuring the total magnetic field using a single sensor. The location of the survey lines and measurement points are shown on Figures 1-3 and 1-4. Total magnetic field measurements are presented on Table 1 for the larger survey area (pump island area) and Table 2 for the survey conducted near Building E-107.

2.1.1 Magnetometer Survey

On 3 June 1997, EA conducted a Magnetometer Survey at Review Item 28. The survey included six survey lines (Lines 1 through 6) in the area around the pump island located west of Building E-107 (Figure 1-3) and three lines (Lines 1 through 3) located adjacent to the southeast corner of Building E-107 (Figure 1-4).

Magnetometer measurements were collected in a 20 X 20 ft grid in the pump island area and in a 15 X 15 ft grid near the building to provide adequate sensitivity to detect one 55-gal drum at a distance of 15 ft from the magnetometer sensor.

Magnetometer measurements were taken at each position location for total field in gammas. The total field (TF) mode is useful for gathering information on deep anomalies. The sensor of the magnetometer was positioned 4 ft above ground surface for all readings.

Total Field measurements were manually recorded in the field logbook and are summarized in Table 1 and Table 2. Each position location was marked with a pin flag which was removed at the end of the survey. Corner locations are marked with wooden stakes which were pounded

close to the ground surface so that they will not be removed during grass mowing. In addition, observations of visual debris and other above ground anomalies encountered on the ground surface (i.e, metal objects, power lines, etc) in the vicinity of the position location were also recorded in the field log book (summarized in Table 1 and Table 2). Photographs were taken to document magnetometer locations and field observations. Any other observations, including weather conditions, were also noted in a field logbook.

Total field measurements were plotted versus distance (y and x axis, respectively) for comparison of the data and to facilitate interpretation of the measurements along each line traveled. Figures 2-1 through 2-6 represent data for the pump island survey and Figures 2-7 through 2-9 represent the data for the survey conducted near Building E-107.

2.2 SITE CONDITIONS OBSERVED DURING THE SURVEY

During the magnetometer survey, EA personnel observed a notable amount of debris along the southern side of Building E-107. The relative amount and types of debris were logged in the field log book (see Tables 1 and 2). The types of debris noted included large metal buoys, drainage piping located in the road near Building E-107, various other metal frames and structures behind Building E-107, and the pump island in the center of the survey west of Building E-107.

The weather conditions during the survey included temperatures ranging from approximately 55-60°F degrees over the course of the day, mostly to partly cloudy with light-to-moderate winds.

2.3 DISCUSSION OF SURVEY RESULTS

2.3.1 Survey West of Building E-107, Pump Island Area

Review of the magnetic signatures for the pump island area indicate that the highest measurements obtained during the survey were obtained from this area on Line 5 at Position 20.

Examination of the TF measurements obtained in the pump island area (Lines 1 through 6) indicate that further investigation is required for Line 1; Position 80, Line 2; Position 40, Line 3; Positions 40 and 100, Line 4; Position 0, Line 5; Position 20 and Line 6; Position 40 (Figure 1-3). These positions have been staked for further investigation.

Survey Findings

After reviewing the TF data for the points measured, several observations can be made which are presented below by their respective line designation.

Line 1:

Line 1 is located along the tree line on the southern most part of the survey area. Review of the magnetic signatures indicate that a small rise in the magnetic signature between Position 40 and 100 (Figure 2-1). During excavation, it is recommended that the excavator start the dig at Position 80 and extend out to Position 40 or 100. These locations have been staked.

Line 2:

Line 2 is located 20 ft north of Line 1 in the pump island area. This magnetic signature rises at Position 40 near the pump island. Position 60 is also near the pump island but shows a decrease in magnetic signature as compared with Position 40 (Figure 2-2). Position 40 has been staked for further investigation. During excavation, it is recommended that the excavator dig from Line 2; Position 40 toward Line 3 as this anomaly appears to be associated with Line 3; Position 40. The anomaly at Position 100 does not appear to be associated with another anomaly.

Line 3:

Line 3 is located 20 ft north of Line 2 and extends west to east between the pump island and a concrete foundation remnant (Figure 1-3). There are 2 sharp peaks in the magnetic signature on this line at Positions 40 and 100 (Figure 2-3). These Positions have been staked for further investigation. Line 3; Position 40 appears to be associated with the rise in signature on Line 2; Position 40 and should be investigated in association with this location.

Line 4:

Line 4 extends west to east directly through the foundation remnant. A rise in the signature at Position 0 appears to be associated with the rise in signature with Line 5; Position 20 (Figure 2-4). This location requires further investigation and should be investigated in the direction of Line 5; Positions 20 and 40.

Line 5:

Line 5 is located 20 ft north of Line 4 with Position 0 located on pavement and the rest of the locations on the grass covered area around the pump island. Due to a sharp increase in magnetic signature at Position 20, possibly associated with the rise in signature at Line 4; Position 0 (Figure 2-5). This location has been staked for further investigation.

Line 6:

Line 6 is located furthest north of the lines on this survey. Positions 0 and 20 are located on the pavement and all other locations were located on the grass. This line runs parallel to power lines. Although Positions 80 and 100 are located near transformers, the only position

that indicates further investigation is Position 40, which shows a slight increase in magnetic signature which may be associated with the rise on Line 5; Position 20 (Figure 2-6).

2.3.2 Survey South of Building E-107

Review of the magnetic signatures for the area south of Building E-107 indicate that the greatest anomaly observed during the survey was located at Line 3; Position 0, which could be attributed to the metal around the building or possibly something located within the building.

Examination of the TF measurements obtained near Building E-107 (Lines 1 through 3) indicate that further investigation is required for Line 1; Position 45 and Line 3; Position 0. These positions have been staked for further investigation.

Survey Findings

Line 1:

Line 1 is located along the road south of Building E-107 and trends from west to east. Each line of this survey was 90 ft long with magnetometer readings obtained every 15 ft. The magnetic signature of this line showed a marked decrease at Position 45. This position has been staked for further investigation.

Line 2:

Line 2 is located 15 ft north of Line 1. A sharp increase in the magnetic signature at Position 75 was attributed to a large metal pipe located in the road near this location. No points on this line were staked for further investigation.

Line 3:

Line 3 is located closest to Building E-107. There is a significant decrease in the magnetic signature at Position 0 and this location has been staked for further investigation.

Ì

3. SUMMARY AND CONCLUSIONS

3.1 PUMP ISLAND AREA

Review of pump island area magnetic signatures indicate that there is ferrous metal (possibly a tank) located in the area near the pump island between Line 2; Position 40 and Line 3; Position 40 (Figure 3-1). There are also strong anomalies located at Line 5; Position 20, Line 4; Position 0, and at Line 3; Position 100. These larger anomalies (over 1000 gammas) fall within the magnetic intensity ranges that would be expected for an underground storage tank (UST). Smaller anomalies (approximately 100 gammas or less) fell within the range that warrant further investigation and these locations were staked for that reason (Line 1; Position 80 and Line 6; Position 40).

The range of gamma readings were from 53,642 (Line 2; Position 120) to 56,465 (Line 5; Position 20), with an average reading of 54,137 with a variation of 2823 gammas observed during the site survey.

3.2 BUILDING E-107

Review of Building E-107 area magnetic signatures indicate that there is ferrous metal located near the building at Line 3; Position 0 (Figure 3-2). This anomaly could be attributed to metal located within the building and the building interior should be inspected prior to excavation at this location. There is also a strong anomaly located at Line 1; Position 45. These larger anomalies (over 1000 gammas) fall within the magnetic intensity ranges that would be expected for an underground storage tank (UST).

The range of gamma readings were from 45,577 (Line 3; Position 0) to 55,628 (Line 2; Position 75), with an average reading of 52,156 with a variation of 10,051 gammas observed during the site survey.

- EA Engineering, Science, and Technology. 1995. Final Basewide Environmental Baseline Survey, NCBC Davisville, RI. October.
- Halliburton NUS Corporation. 1992. UST Remedial Investigation Report, NCBC Davisville, RI. Northern Division Naval Facilities Engineering Command, Contract No. N62472-90-D1298. December.
- TRC Environmental Corporation, Inc. 1991. Phase I Remedial Investigation and Risk Assessment, Naval Construction Center, Davisville, Rhode Island. Final Report. Prepared for U.S. Navy Northern Division Naval Facilities Engineering Command, Philadelphia, PA. May.

TABLE 1 EBS REVIEW ITEM 28 PUMP ISLAND AREA MAGNETOMETER SURVEY NCBC DAVISVILLE

Date: June 3, 1997

Time: started at 1030 hrs., ended at 1120 hrs.

Time: started at 1030 hrs., ended at 1120 hrs.				
Line Number	Position	Total Field in Gammas	Visual Debris / Comments	
1	0	53,853	along trees/bushes	
1	20	53,820		
1	40	53,809		
1	60	53,907		
1	80	53,946		
1	100	53,866		
1	120	53,833	near boats	
2	0	53,848		
2	20	53,825	approaching pump island	
2	40	54,959	near pump island	
2	60	54,113	near pump island	
2	80	53,899		
2	100	53,751		
2	120	53,642	near boats	
3	0	53,909	·	
3	20	55,034	approaching pump island	
3	40	56,040	near pump island	
3	60	53,852	near pump island	
3	80	53,885		
3	100	55,456		
3	120	53,659	near boat (about 50 ft away)	
4	0	55,139		
4	20	53,816		
4	40	54,067	in foundation remnant	
······			· · · · · · · · · · · · · · · · · · ·	

Line Number	Position	Total Field in Gammas	Visual Debris / Comments
4	60	53,714	
4	80	53,744	
4	100	53,739	
4	120	53,829	
5	0	55,453	
5	20	56,465	near power lines
5	40	55,059	near power lines
5	60	53,822	
5	80	53,848	
5	100	53,740	
5	120	53,870	near boat
6	0	53,945	line 6 is closest to power lines
6	20	53,997	
6	40	54,059	
6	60	53,850	
6	80	53,865	near transformers (about 40 ft away)
6	100	53,864	near transformers (about 40 ft away)
6	120	53,869	boat about 50 ft away

TABLE 2 EBS REVIEW ITEM 28 BUILDING E-107 MAGNETOMETER SURVEY NCBC DAVISVILLE

Date: June 3, 1997

þ

Time: started at 1540 hrs., ended at 1615 hrs.

Line Number	Position	Total Field in Gammas	Visual Debris / Comments
1	0	52,789	
1	15	52,830	
1	30	52,851	
1	45	51,771	
1	60	53,944	on asphalt
1	75	53,832	4 ft from dumpster
1	90	54,266	6 ft from dumpster
2	0	52,101	
2	15	51,384	near metal buoys
2	30	50,675	
2	45	50,800	
2	60	51,981	
2	75	55,628	near pipe in road
2	90	51,940	
3	0	45,577	line 3 is along bldg, lots of metal (see photos)
3	15	52,156	
3	30	51,980	
3	45	52,093	
3	60	52,035	near flag pole and shed
3	75	51,886	
3	90	52,755	

Magnetometer Survey

Pump Island Area

Magnetometer Survey Data

Pump Island Area, Line 1

FIGURE 2-2: Magnetometer Survey Data Pump Island Area, Line 2

Magnetometer Survey Data

Pump Island Area, Line 3

Magnetometer Survey Data

Pump Island Area, Line 4

Pump Island Area, Line 5

Pump Island Area, Line 6

Magnetometer Survey

Building E-107

Building E-107, Line 1

Building E-107, Line 2

Building E-107, Line 3

Appendix B-3

Review Item 28 (UST Area)

Test Pit Logs and Analytical Report (FWENC)

Review Item 28 (UST Area) Summary of Test Pit Logs (FWENC)

Grid Location	Dimensions	Comments	Sample
P-45-0	15 ft long (6 ft 8 in.	A wood chip layer was identified at 5 ft bgs. Wood	EBS28-P45
(south of Building	at the bottom) × 2 ft	debris and lifting cables were identified at 6 to 8 ft	
E-107)	6 in. × 6 ft 2 in.	bgs. The wood chips were visibly stained with	
		petroleum and a petroleum odor was noted and the	
i		material was sampled. A jar headspace PID	-
		measurement of a sample from the wood chip layer	
		was 35 ppm.	
P-0-3	15 ft (6 ft 8 in. at the	No debris was found. A petroleum odor was noted.	EBS28-P03
(south of Building	bottom)× 2 ft 6 in. ×	A jar headspace PID measurement of a sample from	
E-107, near metal	6 ft 7 in.	was 15 ppm.	
debris, i.e., metal			
boat stands and			
metal buoys)			
P-80-1	15 ft (6 ft 8 in. at the	No debris was found. TPH was non-detect from a	None
(south of pump	bottom)× 2 ft 6 in. ×	field screening with a PetroFlag kit.	
island)	7 ft		
P-40-2	15 ft (6 ft 8 in. at the	No debris was found. The test pit was located	EBS28-P40-2
(south of pump	bottom) × 2 ft 6 in.	adjacent to the pump island. The concrete was	
island)	×6 ft	noted to be reinforced with rebar. A field screening	
i		of soil samples with a PetroFlag kit had a detected	
		TPH concentration of 326 ppm.	
P-40-3	15 ft (6 ft 8 in. at the	No debris was found. Metal pipes exiting the pump	None
(north of pump	bottom) × 2 ft 6 in.	island slab were noted near the test pit location.	
island)	× 6 ft 2 in	The concrete is reinforced with rebar. TPH was	
1		non-detect from a field screening with a PetroFlag	
		kit.	
P-00-4	15 ft (6 ft 8 in. at the	No debris was found. Some large rocks and some	None
(northwest of pump	bottom)× 2 ft 6 in. ×	ledge was encountered. TPH was non-detect from a	
island)	6 ft	field screening with a PetroFlag kit.	
P-20-5	15 ft (6 ft 8 in. at the	No debris was found. An old asphalt layer and	None
(northwest of pump	bottom)× 2 ft 6 in. ×	some large rocks were encountered. TPH was non-	
island)	6 ft	detect from a field screening with a PetroFlag kit.	
P-40-6	15 ft (6 ft 8 in. at the	No debris was found. Bedrock was encountered at	None
(north of pump	bottom)× 2 ft 6 in. ×	2 ft bgs and the test pit was relocated 3 ft to the	İ
island)	6 ft 8 in.	north. A field screening of a sample with a	ļ
1		PetroFlag kit had a detected TPH concentration of 5	Ì
7.000	150/600	ppm.	
P-100-3	15 ft (6 ft 8 in. at the	No debris was found. TPH was non-detect from a	None
(east of pump	bottom)× 2 ft 6 in.	field screening of samples with a PetroFlag kit.	
island)	×6 ft 2 in.		

FOSTER WHEELER ENVIRONMENTAL CORPORATION

TO:

Jane Connet

FROM: Tricia Summer

DATE: August 5, 1997

RE:

Review Item 28 - Test Pitting

Review Item 28 Test Pitting Log

1:610	Exception Size	Cxcavation		Samples telescoper Se
Location		· Direction		
P-45-0	15' long at surface 6-8' long at bottom of excavation 2'6" wide 6'2" deep	Fast to West	Wood Chip Layer at 5': Wood Debris and Lifting Cables at 6-8'. Wood Chips were visibly stained with petroleum, petroleum odor noted.	Jar Head Space with PID: 35 ppm (of wood chip layer) Petroleum Odor Noted. Sample sent to Lab for analysis of TPH 418.1, 8015M, SVOC and VOC.
P-0-3	15' long at surface 6-8' long at bottom of excavation 2'6" wide 6'7" deep	North to South	No Debris found. This test pit location is near Bldg E-107 and is located near metal debris (i.e. metal boat stands and metal buoys)	Jar Head Space with PID: 15 ppm Petroleum Odor Noted. Sample sent to Lab for analysis of TPH 418.1, 8015M, SVOC and VOC.
P-60-1	15' ong at surface 6-3 long at bottom of excavation 2'6" wide 7' deep	North to South	No Debris found.	Field Screening with PetroFlag Kirs for TPH: 0 ppm
F 40-2	15' long at surface 6-8' long at bottom of excavation 2'6' wide 6' ecep	East to West	No Debris found. Test pit location is adjacent to pump island. Concrete is reinforced with rebar.	Field Screening with PetroFlag Kiss for TPH: 326 ppm Sample sent to Lab for analysis of TPH 418.1, 8013M, SVOC and VOC.
¥0-3	15' long at surface 6-8 long at bottom of excavation 2'6' wide 6' 2" deep	East to West	No Debris Found. Memi pipes exiting pump island slab noted near test pit location. Test pit location is adjacent to pump island. Concrete is reinforced with rebar.	Field Screening with PetroFlag Kits for TPH: 0 ppm
P-00-4	15' long at surface 6-8' long at bottom of excavation 2'6' wide 6' rep	North to South	No Debris Fo 1d. Large Rocks and Some Ledge encountered.	Field Screening with PetroFlag Kirs for TPH: 0 ppm
20-5	15 or at surface 6-8 le ; at bottom c'excava: on 2'6' w ie 6' cep	No th to South	No Debris Found. Old asphalt layer and some large rocks encountered.	Field Screening with PetroFlag Kits for TPH: 0 ppm
40-6	15' long at surface 6-i' at bottom of excavation 2'6" wide 6'5" deep	East to West	No Debris Fo 1d. Ledge encountered 2. Moved test pit locati 3 to the North to dig 1 pit to depth.	Field Screenin with PetroFlag Kies for TPH: 5 pp 1
100-3	15 long at surface 6- long at bottom of excavation 2' wide 6 deep	East to West	No Debris Fc 1.	Field Screen: with PetroFlag Kits for TPH: 0

SITE ADDRESS: 1446 DAVISVILLE ROAD, NORTH KINGSTOWN, RI 02852

TEL: 401-294-6605 FAX: 401-294-9122

175 Metro Center Boulevard • Warwick, Rhode Island 02886-1755

(401) 732-3400 Fax (401) 732-3499

1232 East Broadway Road, Suite 210 ● Tempe, Arizona 85282 (602 303-9535 Fax (602) 921-2883

CHAIN-OF-CUSTODY RECORD

Page _ / _ of _ /

TO WELL WAS BOUNDED.	Z PREPOI	RTYTO	A								ET AT	1167	Wale.	. SINN	OIG	ATOF	7973	TO (E)		1	344 Tal			
COMPANY FWEN	ے ر				РНО	NE 2	74-6605	СОМ	PANY									OHQ	1E			I	AB REFEREN	CE#.
NAME DAVID P	ETERSON)			FAX			NAM					77					FAX			· · · · · ·			
ADDRESS 1446	DANSVILL	EY	20	_				ADD	RESS					,	-								TURNAROUND	
								CITY	/ST/ZI	P						0							48/12	•
CITY/ST/ZIP N. K.	1000/0	CLIE	NT PR	OJEC	Τ#.		CLIENT P.O.#:	i	Π	-					0.1	5								
DAVISVILLE												/	, ,	′. \/	W,	KEQU /	ESTEL	ANA C	LYSE	s ′ /	//	/	/	
		├─	Ι	1	Τ-	Т		Ŋ	┨		υp		o/J	Ŋ, o	Υ,							/ .		
		里		_				INER E		G	$\mathcal{C}_{\mathcal{A}}$	$\langle \gamma \rangle$			/	/ /	/	/ /	/ /	/ /	/ /			
SAMPLE IDENTIFICATION	DATE/TIME SAMPLED	COMPOSITE	GRAB	WATER	SOIL	ОТНЕК	LAB ID	Y Y		1pr	/w	14/) (b)								/ /		COMMENT	S
		g		*		l°		# OF CONTAINERS	`	1/	7/	$\langle \mathcal{Y} \rangle$	6AX			REQU								
	7/2. 1400	 	×	 	┼	╂		1	0	1	/_	/ <u>/</u>	Y _	/	\leftarrow	/- -	\leftarrow	_	_		\leftarrow			
DVEBS28 SS P40-2	1/31 ////	 	 ^		┼	 	<u> </u>	 	10		-	->	1				-	-	-	-	 			
	,	 	 	 	-	-		 		-		-		-	-	 		-		-	 			
	,	-	\vdash	 	 	 		-		 	 	-	 	 		 	ļ		-	-	 			
	/	 	-		1	1						 	 						 	 			· · · · · · · · · · · · · · · · · · ·	
1	/		1															-		1				
	/																							
	/																							
	/																							
	/	<u> </u>			<u> </u>	ļ			ļ	<u> </u>				<u> </u>		<u> </u>	<u> </u>							
	/			<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			ļ		ļ				<u> </u>	ļ		ļ			
	/					ļ	4.665	BTER			<u> </u>		<u> </u>		<u> </u>	1.55	7101			<u></u>	<u> </u>		Y	===:
TSF# RELINQUI	ISHED BY	+	DATE			-	ACCE	PIED	ВТ			 	DATE	TIME	<u> </u>	JADO.	ITION.	AL RE	:MAKI	KS:			COOLE	R TEM
Ist -		7/2	<u>' </u>	115	0	ļ	<u> </u>					ļ		<i>'</i>		1								
2nd				/										/										
	***************************************			/			,																	
3rd		WHITE: LABORATORY COPY					Y		REPO		L				CLIE									

Review Item 28 (UST Area) **Summary of Test Pit Analytical Data (FWENC)**

SAMPLE ID	EBS28-P-45		EBS28-P40-2		EBS28-P-0-3				
ANALYTE	CONC	Q	CONC	Q	CONC	Q			
TPH									
TPH by 418.1 (mg/kg)			170		88				
TPH GRO (μg/kg)	ND		ND		ND				
VOC (μg/kg)									
Acetone	560	D	11		22				
Xylenes	12		ND		ND				
SVOC (µg/kg)									
Acenaphthylene	19,000	J	ND		ND				
Acenaphthene		0.24	ND		ND				
Dibenzofuran	220,000		ND		ND				
Fluorene			ND		ND				
Phenanthrene	570,000		ND		ND				
Anthracene	840,000		ND		ND				
Carbazole			ND		ND				
Fluoranthene	2,300,000	D	ND		ND				
Pyrene	2,800,000		ND		ND				
Benzo(a)anthracene		D	ND		ND				
Chrysene		e e	ND		ND				
Benzo(b)fluoranthene			ND		ND				
Benzo(k)fluoranthene			ND		ND				
Benzo(a)pyrene			ND		ND				
Indeno(1,2,3-cd)pyrene	44.00		ND		ND				
Benzo(g,h,i)perylene	68,000		ND		ND				
Pesticides/PCB (µg/kg)									
			ND		ND				
Endosulfan II	220		ND		ND				
4,4'-DDT	ND		7.6		ND				
Metals (mg/kg)			<u></u>]			
Arsenic	ND		3		3				
Barium	9		13		8				
Cadmium	ND		ND		0.1				
Chromium	2		8		6				
Lead	6		8		6.9				
Selenium	5		ND		ND				

Evaluation of FWENC's test pit analytical data was as follows:

- In sample EBS28-P-0-3, TPH, acetone, and various metals were detected. The
 concentrations of these analytes did not exceed RIDEM's Industrial/Commercial
 Direct Soil Exposure criteria or DAF-20 criteria. Only arsenic and chromium
 exceeded RIDEM's Residential Direct Soil Exposure criteria or DAF-1 criteria;
 however, these concentrations were within background levels. TPH-GRO, SVOC,
 pesticides, and PCB were not detected in this sample.
- In sample EBS28-P40-2, TPH, acetone, 4,4'-DDT, and various inorganics were
 detected. The concentrations of these analytes did not exceed RIDEM's
 Industrial/Commercial Direct Soil Exposure criteria or DAF-20 criteria. Only arsenic
 and chromium exceeded RIDEM's Residential Direct Soil Exposure criteria or DAF1 criteria; however, these concentrations were within background levels. TPH-GRO,
 SVOC, and PCB were not detected in this sample.
- In sample EBS28-P-45, TPH, acetone, xylenes, dieldrin, endosulfan II, and various SVOC and metals were detected. TPH-GRO and PCB were not detected in this sample. The concentration of TPH exceeded the RIDEM Industrial/Commercial Direct Soil Exposure and the RIDEM Class GB Leachability criteria. The concentrations of the two VOC compounds were below the screening criteria. Nine of sixteen detected SVOC exceeded the DAF-20 criteria and, of these, five also exceeded the RIDEM Industrial/Commercial Direct Soil Exposure criteria [benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and indeno(1,2,3-cd)pyrene]. A RIDEM Direct Soil Exposure Criterion is not available for dibenzofuran; however, the concentration of this analyte exceeded the Region IX EPA Industrial RBC. Of the six remaining SVOC that did not exceed these criteria, five of these exceeded the RIDEM Residential Direct Soil Exposure criteria and/or DAF-1 criteria. For pesticides, the concentration of Dieldrin exceeded its DAF-20 criterion as well as its RIDEM Residential Direct Soil Exposure Criterion. Endosulfan II was below the screening criteria. The concentrations of metals were below the screening criteria except for selenium, which only exceeded its DAF-1 criterion.

٠.~

175 Metro Center Boulevard ● Warwick, Rhode Island 02886-1755 (401) 732-3400 ● Fax (401) 732-3499

1232 East Broadway Road, Suite 210 ● Tempe, Arizona 85282 (602 303-9535 ● Fax (602) 921-2883

CHAIN-OF-CUSTODY RECORD

Page _/ of _/

TANKE WAS ASSESSED.		A LE TO	ÇT ÇÇ									LIJAC.	enger-		7.7	លឲ្យ	W.		11/1						
COMPANY FWEN	رے					РНО	NE 2	74-6605	СОМ	PANY									PHQ	NE.				AB REI	FERENCE #:
NAME DAVID P	ETE	No~) ———			FAX			NAM	E									FAX						
ADDRESS 1446	DAM	SVILL	EX	20	•				ADD	RESS					,										ROUND TIME:
CITY/ST/ZIP N. K	N6 57	らしん		Rt					CITY	//ST/ZI	P						N)						48/	72
CLIENT PROJECT NAME:			CLIE	NT PR	OJEC	Γ#:		CLIENT P.O.#:								04	PEOU	POTEI	ANA	1 VCE		······			
DANISVILLE									•					' /	<u>'.</u> }	10	/	/	/ /	L 136	; /	//	' /	/	
SAMPLE IDENTIFICATION		e/TIMB MPLBD	COMPOSITE	GRAB	WATER	NOS	OTHER	LAB ID	OF CONTAINERS		1pr	3/3/		2/1/ 8/18/	9	\ \ /	REQUI	//	/	//	//	//	/	сом	MENTS
			Ľ			<u> </u>			Ö			<u>/_</u>	<u> </u>	<u>y</u>											
DVEBS28 55 P40-2	7/31	11105		×					1	X	ン	×	X												
			<u> </u>		<u> </u>	<u> </u>																			
		<u>'</u>	 	↓_	 	<u> </u>	_		 	 															
		1	 	ـــ	<u> </u>	 	┼		╀—	 						<u> </u>	-		ļ		<u> </u>	<u> </u>			
	 	1	┼—	┼	├	┿	┼		┼	┼—			-			 	 	 	 	 	ـــ	ــــ			
		'	+-	┼─	 	┼—	+		\vdash	┼─			 			 	 		 	 	├	—			-
		7	 	 	一	十一	+-		十一	┼─		-	 		-	 	 	 	-	┼─	┼─	┼─			
		1	 	·	 	1	十		 	T			 	 	 	 	 	 	 	 	 	+-			
		7	1	 	 	1	 		1	 		<u> </u>	 	 			 	 	 	†-	 	┼─			
		1	1					 		1					 		十一	 	 	 	 	 			
		!																			-	†			
TSF# RELINQUI	ISHED BY		7/2	DATE			-	ACCE	PTED	BY			F	DATE	TIME		ADDI	TION	AL RE	MARI	ζS:			10	COOLER TEMP
151			1/2	<u>ソ</u>	115.	<u></u>	<u> </u>																	L	
2nd					<i> </i> .		<u> </u>								/										•
318					/					_				-	/										

Metro Center Boulevard ● Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fex (401) 732-3499

1232 East Broadway Road, mile 210 ● Tempe, Arizona 85282 (602 303-9535 • Fax (602) 921-2883

CHAIN-OF-CUSTODY RECORD Page 1 of 1

THE PERSON NAMED IN THE PE	CARPINE FREPOR	TITO			1864	XXXX	建筑打造建	DESCRIPTION OF THE PERSON OF T	100	砂层和	निर्धनल)(O)	TOE	145				LANCE OF	と は と と と と と と と と と と と と と と と と と と	
COMPANY Foster L					PHON	1E 29	4 6605	СОМІ										PHON					B REFERENCE #:
NAME TILLA	Summer				FAX			NAMI	E .									FAX					
	LUGUILE R	ر ر			_			ADDF	ESS													TU	RNAROUND TIME:
CITY/ST/ZIP N. KIN			- Z Z S	5 Z				CITY	ST/ZIF	,													5 DAY
CLIENT PROJECT NAME:	9	CLIEN	IT PRO	PROJECT #: CLIENT P.O.#:				REQUESTED ANALYSES															
DAVISVILE		12	ક્ષ	000	6			_					alge L		Ż						/	/	/
SAMPLE IDENTIFICATION	DATE/TIME SAMPLED	COMPOSITE	GRAB	WATER	SOIL	OTHER	LAB ID	# OF CONTAINERS		,et/	11/20/	5.th	10h							//			COMMENTS
DV- POS 28 - PO3	7/30/47 / 1500		X		X			1	٨	K	X	X											
DV- EBSZB- P45	7/30/51/1150		X		7			1	1	¥	Y	٧											
	, ,																						
	1																						
	,																						
											_							_	<u> </u>	_			
	′				<u> </u>	<u> </u>		_			<u> </u>	_						<u> </u>	<u> </u>		<u> </u>		
	/			<u> </u>		<u> </u>	<u> </u>	_			<u> </u>	_							ļ	<u> </u>	<u> </u>	·	<u> </u>
v.,	/										<u> </u>	<u> </u>	ļ					_	<u> </u>	<u> </u>	ļ		
	/							<u> </u>	ļ			_							<u> </u>	<u> </u>	ļ		· - · · · · · · · · · · · · · · · · · ·
	,				<u> </u>	<u> </u>		ļ	<u> </u>			_	ļ					<u> </u>	<u> </u>		ļ		
	/								21/			ļ		CT1) 45		155	<u> </u>						Loon to stru
TSF# RELIDIQU	SHED BY	7	DATE			1	Willy	EPTED	ie.			1		TIME		ADDI	HQN.	AL KE	MARI	w:			COOLER TEMI
2nd				/				1												<u> </u>			
3rd				/					/														
	WHITE: LABORATORY COPY				YELL ORT COPY PINK: CLIENT'S COPY																		

b Project #:

D1215

ient Name:

Foster Wheeler

ent Proi #:

1284-0006

ilent PO#:

000620

oject Name: Davisville 8/13/97

ate Due: stal Price:

S

YES

vicct Mgr:

EAL PAS

desman:

sí Reg'd: NA

ompleted?:

Logged In By:

Reviewed By:

Time: 3:57

<u>ab ID</u> ·1	Client ID DV-EBS28-PO3	<u>Matrix</u> SL	Analysis Post/PCB by 8080 RCRA 8 Metals	Price	<u>Sampled</u> 7/31/97	Received 7/31/97	TPH	œ	BNA	<u>Herb</u>	<u>P/P</u>	Wet	Met	Y-GC Y-M	<u>Sub</u>	ì.
12	DV-EBS28-P45	SL	Pest/PCB by 8080 RCRA 8 Metals		7/31/97	7/31/97					ì		1			
1 3 :	DV-EBS28SSP40-2	SL	Post/PCB by 8080 RCRA 8 Metals		7/31/97	7/31/97					1		,			

TPB Wet Met 0

OTES:

1) Samples were previously D1184-01, D1184-02, and D1191-01.

RIGINAL REPORT GOES TO:

oster Wheeler Environmental Corp.

70 Atlantic Avenue ost n, MA 02210

Ann: Dave Peterson

Phone: 617-457-8200 Fax: 617-457-8498

INVOICE GOES TO:

Foster Wheeler Environmental Corp.

Atm: Rita Lee

2300 Lincoln Hwy East, One Oxford Valley

Langhorne, PA 19047

Client: Foster Wheeler Environmental Corp.

Client ID: DV-EBS28-P03

Lab ID: D1215-01

Analysis: Method 8080

Analysis Date: 8/12/97 Matrix: Soff, 89% solids

Concentration in: ug/kg, dry weight basis

Dilution: 1

		Reporting
<u>Analyte</u>	Results	Limits
alpha-BHC	ND	1.9 ·
gamma-BHC	ND	1.9
Heptachlor	ND	1.9
Aldrin	ND	1.9
beta-BHC	ND	1.9
delta-BHC	ND	1.9
Heptachlor epoxide	ND	1.9
Endosulfan i	ND	1. 9
4,4-DDE	ND	3.8
Dieldrin	ND	3.8
€ndrin	ND	3.8
4,4'-DED	ND	3.8
Endosulfan II	ND	3.8
4,4'-DDT	ND	3.8
Endrin äldehyde	ND	3.8
Methoxychlor	NO	19
Endosulian sulfate	ND	3.8
Chlordan (technical)	ND	96
Toxaphene	ND	190
Aroclor 1016	ND	38
Aroclor 1221	ND	76
Aroclor 1232	ND	38
Aroclor 1242	ND	38
Aroclor 1248	ND	38
Aroclor 1254	ND	38
Aroclar 1260	ND	38
		QC Batch: P0811-B1
Surrogate Recovery:		
2,4,5,6 Tetrachloro-m-xylene	83%	•
Decachlorobiphenyl	103%	

Client: Foster Wheeler Environmental Corp.

Client ID: DV-EBS28-P45

Lab IO: D1215-02

Analysis: Method 8080

Analysis Date: 8/12/97 Matrix: Soil, 42% solids

Concentration in: ug/kg, dry weight basis

Dilution: 10

		Reporting
Analyte	Results	Limits
alpha-BHC	ND	40
gamma-BHC	ND	40
-leptachior	ND	40
Aldrin	ИD	40
beta-BHC	ND	40
delta-BHC	ND	40
t-leptachlor epoxide	ND	40
Endosulfan I	ND	40
4.4-DDE	ND	B1
Dieldrin	94	81
Endrin	ND	81
4,4'-DDD	ND	81
Endosulfan II	220	81
4,4'-DDT	ND	81
Endrin aldehyde	ND	81
Methoxychlor	ND	400
Endosulfan sulfate	ND	81
Chlordane (technical)	ND	2,000
Toxaphene	ND	4,000
Arccior-1016	ND	810
Arodor-1221	ND	1,600
Aroclor-1232	ND	810
Aroclor-1242	ND	810
Aroclor-1248	ND	810
Aroclor-1254	ND	810
Araclor-1260	ND	810

QC Batch: P0811-B1

Surrogate Recovery:

2,4,5,6-Tetrachloro-m-xylene DL Decachlorobiphenyl DL

ND = Not detected

DL = Diluted out

Client: Foster Wheeler Environmental Corp.

Client ID: DV-EBS28SSP40-2

Lab ID: D1215-03 Analysis: Method 8080 Analysis Date: 8/12/97 Matrix: Soil, 92% solids

Concentration in: ug/kg, dry weight basis

Dilution: 1

Reporting

∠ πaiγte	Results
alpha-BHC	ND
gamma-BHC	ND
I-leptachlor	ND
Aldrin	ND
beta-BHC	ND
delta-BHC	ND
Heptachlor epoxide	ND
Endosulfan i	ND
4,4'-DDE	ND
Dieldrin	ND
Endrin	ND
,4,4'-DDD	ND
Endosulfan II	ND
4 ,4'-DDT	7.8
Endrin aldehyde	ND
Methoxychlor	ND
Endosulfan sulfate	ND
Chlordane (technical)	ND
Toxaphene	ND
Aroclor-1016	ND
Aroclor-1221	ND
Aroclor-1232	ND
Aroctor-1242	ND
Aroctor-1248	ND
Aroclor-1254	ND
Aroclor-1260	ND

Limits
Lima
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
3.7
3.7
3.7
3.7
3.7
3.7
3.7
18
3.7
92
180
37
74
37
37
37
37
37
31

QC Batch: P0811-B1

Surrogate Recovery:

2,4,5,6-Tetrachloro-m-xylene 77% Decachlorobiphenyl 98%

Client: Foster Wheeler Environmental Corp.

Client ID:

Lab ID: Method Blank, P0811-B1

Analysis: Method 8080

Analysis Date: 8/12/97

Matrix: Soil

Concentration in: ug/kg

Dilution: 1

Reporting

Analyte	Results
alpha-BHC	ND
gamma-BHC	ND
1-leptachlor	ND
Aldrin	ND
toeta-BHC	ND
delta-BHC	ND
Heptachlor epoxide	· ND
Endoșulfan I	ND
4,4'-DDE	ND
Dieldrin	ND
Endrin	ND
4 ,4'-DDD	ND
Endosulfan II	ND
4,4'-DDT	ND
Endrin aldehyde	ND
Methoxychlor	ND
Endosulfan sulfate	ND
Chlordane (technical)	ND
Toxaphene	ND
Arocior-1016	ND
Aroclor-1221	ND
Aroclor-1232	ND
Arocior-1242	ND
Aroclor-1248	ND
Aroclor-1254	ND
Aroclor-1260	ND

Limits
Cump
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
3.4
3.4
3.4
3.4
3.4
3.4
3.4
17
3.4
85
170
34
68
34
34
34
34
34

QC Batch: P0811-B1

Surrogate Recovery:

2,4,5,6-Tetrachloro-m-xylene 90% Decachlorobiphenyl 105%

Lab Control Summary

Client: Foster Wheeler Environmental Corp.

Lab ID for Blank Spike: Lab Control Sample, P0811-LCS1

Analysis: Method 8080

Matrix: Solid

Analysis Date for Blank Spike: 8/12/97

	% Recovery
	30
,	95
	88
	102
•	129
	75

QC Batch: P0811-B1

Client: Foster Wheeler Environmental Corp.

Client ID: DV-EBS28-PO3

Lab ID: D1215-01

Analysis Method: 7471A (Mercury)

6010A (Others)

Matrix: Soil, 89% Solids

Concentration in: mg/kg, dry weight basis

Analysis Date: 8/12/97

		Reporting
Analyte	Results	<u>Limit</u>
Arsenic	3	1
Barium	8	1
Cadmium	0.1	0.1
Chromium	. 6	1
Lead	6.9	0.5
Mercury	ND	0.3
Selenium	ND	2
Silver	ND	1

QC Batch: 0807PBS

Client: Foster Wheeler Environmental Corp.

Client ID: DV-EBS28-P45

Lab ID: D1215-02

Analysis Method: 7471A (Mercury)

6010A (Others)

Matrix: Soil, 42% Solids

Concentration in: mg/kg, dry weight basis

Analysis Date: 8/12/97

		Reporting
Analyte	Results	Limit
•		
Arsenic	ND	2
Barium	9	2
Cadmium	ND	0.2
Chromium	2	2
Lead	6	1
Mercury	ND	0.6
Selenium	5	4
Silver	ND	2

QC Batch: 0807PBS

Client: Foster Wheeler Environmental Corp.

Client ID: DV-EBS28SSP40-2

Lab ID: D1215-03

Analysis Method: 7471A (Mercury) 6010A (Others)

Matrix: Soil, 92% Solids

Concentration in: mg/kg, dry weight basis

Analysis Date: 8/12/97

Analyte	Results	Reporting <u>Limit</u>
Arsenic	3	1
Barium	13	1
Cadmium	ND	0.1
Chromium	8	1
Lead	8.0	0.5
Mercury	NO	0.3
Selenium	ND	2
Silver	ND	1

QC Batch: 0807PBS

Client: Foster Wheeler Environmental Corp.

Client ID:

Lab ID: Prep Blank, 0807PBS Analysis Method: 7471A (Mercury) 6010A (Others) Concentration in: mg/kg Analysis Date: 8/12/97

		Reporting
Analyle	Results	Limit
Arsenic	ND	• 1
Barium	ND	1
Cadmium	ND	0.1
milmc .	ND	1
d t	ND	0.5
Mercury	G'A	0.3
Selenium	ND	2
Silver	ND	1

QC Batch: 0807PBS

NO = Not detected

promotion and a second control of the second

Client: Foster Wheeler Environmental Corp.

Client ID:

Lab ID: Lab Control Sample, 0807LCSS

Analysis Method: 7471A (Mercury)

6010A (Others)

Concentration in: mg/kg Analysis Date: 8/12/97

Analyte	% Recovery
Arsenic	97
Barium	99
Cadmium	100
Chromium	101
Lead	93
Mercury	92
Selenium	85
Silver	103

QC Batch: 0807PBS

Analysis Report: Gasoline Range Organics (GRO)

Cli nt: Foster Wheeler Environmental Corp.

Analysis: GRO by GC-FID

Matrix: Soil

Concentration in: mg/kg, dry weight basis

Lab ID	<u>Client ID</u>	Result	Reporting <u>Limit</u>	% Solid	% Surrogate <u>Recovery</u>	Analysis Date
D1191-01	DV-EBS28SSP40-2	ND	0.54	93	72*	8/1 <i>/</i> 97
					•	
01/06						
QA/QC Method Blank	«					
V4B0801A	•	ND	0.50		88	8/1/97
Lab Control S	Sample (% Recovery)					.*
V4L0801A		84			98	8/1/97

^{*}Out of control limit due to matrix interference, verified by reanalysis (reanalysis recovery = 70%)

Analysis Report: Volatile Organic Compounds

Client: Foster Wheeler Environmental Corp.

Client ID: DV-EBS28SSP40-2

Lab ID. D1191-01 Analysis: Method 8240 Analysis Date: 8/2/97 Matrix: Soil, 93% solids

Concentration in: ug/kg, dry weight basis

Dilution: 1

		Reporting
<u>Analyte</u>	Results	Limits
		
Chloromethane	ND	5
Vinyl chloride	ND	5
Bromomethane	ND	5
Chloroethane	ND	5
1,1-Dichloroethene	ND	5
Carbon disulfide	ND	5
Acetone	11	5
Methylene chloride	ND	5
trans-1,2-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
cis-1,2-Dichloroethene	ND	5
2-Butanone	ND	5
Chloroform	ND	5
1,2-Dichloroethane	· ND	5
1,1,1-Trichloroethane	ND	5
Carbon tetrachloride	ND	5
Benzene	ND	5
Trichloroethene	ND	5
1,2-Dichloropropane	ND	5 .
Bromodichloromethane	ND	5
cis-1,3-Dichloropropene	ND	5
trans-1,3-Dichloropropene	ND	5
1,1,2-Trichloroethane	ND	5
Dibromochloromethane	ND	5
Bromoform	ND	5
4-Methyl-2-pentanone	ND	5
Toluene	ND	5 .
Tetrachloroethene	ND	5
2-Hexanone	ND	5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
Xylenes, total	ND	5
Styrene	ND	5
1,1,2,2-Tetrachloroethane	ND	5
	, +	QC Batch V1B0802A
Surrogate Recovery:		
1,2-Dichloroethane-d4	103%	•
Toluene-d8	101%	
	96%	
Bromofluorobenzene	90%	

Analysis Report: Volatile Organic Compounds

Client Foster Wheeler Environmental Corp.

Client ID:

Lab ID: Method Blank, V1B0802A

Analysis: Method 8240

Analysis Date: 8/2/97

Matrix Soil

Concentration in: ug/kg

Dilution: 1

Reporting

		veborand	
<u>Analyte</u>	Results	Limits	
Chloromethane	ND .	5	
Vinyl chloride	ND	5	
Bromomethane	ND	5	
Chloroethane	ND	5	
1,1-Dichloroethene	ND	5	
Carbon disulfide	ND	5	
Acetone	ND	. 5	
Methylene chloride	ND	5	
trans-1,2-Dichloroethene	ND	5	
1,1-Dichloroethane	ND	5	
cis-1,2-Dichloroethene	ND	5	
2-Butanone	ND	5	
Chloroform	· ND	5	
1,2-Dichloroethane	ND	5	
1,1,1-Trichloroethane	ND	5	
Carbon tetrachloride	ND	5	
Benzene	ND	5	
Trichloroethene	ND	5	
1,2-Dichloropropane	ND	5	
Bromodichioromethane	ND	5	
cis-1,3-Dichloropropene	ND	5	
trans-1,3-Dichloropropene	ND	5	
1,1,2-Trichloroethane	ND	5	
Dibromochloromethane	ND	5	
Bromoform	ND	5	
4-M thyl-2-pentanone	ND	5	
Toluene	ND	5	
Tetrachloroethene	ND	5	
2-Hexanone	ND	5	
Chlorobenzene	ND	5 .	
Ethylbenzene	ND	5	
Xylenes, total	ND	5	
Styrene	ND	5	
1.1,2 2-Tetrachloroethane	ND	5	
7,7,2 2 10000000000000000000000000000000000		QC Batch: V180802A	
Surrogate Recovery:	•		
1,2-Dichloroethane-d4	103%		
Toluene-dB	104%		

Bromofluorobenzene

102%

Analysis Report: Total Petroleum Hydrocarbons

Client: Foster Wheeler Environmental Corp.

Analysis: Method 418.1

Matrix: Soil

Concentration in: mg/kg, dry weight basis

		•	Reporting		
Lab ID	Client ID	Result	% Solid	<u>Limit</u>	Analysis Date
D1191-01	DV-EBS28SSP40-2	170	93	23	8/5/97

ND	22	8/5/97
		•
84	ND	8/5/97
	· · -	

Analysis Report: Semivolatile Organic Compounds

Cli nt: Foster Wheeler Environmental Corp.

Client ID: DV-EBS28SSP40-2

Lab JD: D1191-01 Analysis: Method 8270 Analysis Date: 8/5/97 Matrix: Soil, 93% solids

Concentration in: ug/kg, dry weight basis

Dilution: 1

		Reporting
<u>Analyte</u>	Results	Limits
Phenol	ND	350
bis(2-Chloroethyl)ether	ND	350
2-Chlarophenol	ND	350
1,3-Dichlorobenzene	ND ·	350
1,4-Dichlorobenzene	ND	350
1,2-Dichlorobenzene	ND	350
2-Methylphenol	ND	350
2,2'-oxybis(1-Chloropropane)	ND	350
4-Methylphenol	ND	350
n-Nitroso-di-n-propylamine	ND	350
Hexachloroethane	ND	350
Nitrobenzene	ND	350
Isophorone	ND	350
2-Nitrophenol	ND	350
2,4-Dimethylphenol	ND	350
bis(2-Chloroethoxy)methane	ND	350
2,4-Dichlorophenol	ND	350
1,2,4-Trichlorobenzene	ND	350
Naphthalene	ND	350
4-Chloroaniline	, ND	350
Hexachlorobutadiene	ND	350
4-Chloro-3-methylphenol	ND	350
2-Methylnaphthalene	ND	350
Hexachlorocyclopentadiene	ND	350
2,4,6-Trichlorophenol	ND	350
2,4,5-Trichlorophenol	ND	890
2-Chloronaphthalene	ND	350
2-Nitroaniline	ND	890
Dimethylphthalate	ND	350
Acenaphthylene	ND	350
2,6-Dinitrotoluene	ND	350
3-Nitroaniline	ND	890
Acenaphthene	ND	350
2,4-Dinitrophenol	ND	890
4-Nitrophenol	ND	890
Dibenzofuran	ND	350
2.4-Dinitrototuene		350 350
2,4-Dilitoomocite	ND	330

Client ID DV-EBS28SSP40-2

Lab ID: D1191-01

		Reporting
Analyte	Results	Limits
Diethylphthalate	ND	350
Fluor ne	ND `	350
4-Chlorophenyl-phenylether	ND	350
4-Nitroaniline	ND	890
4,6-Dinitro-2-methylphenol	ND	890
m-Nitrosodiphenylamine	ND	350
4-Bromophenyl-phenylether	ND	350
I-lexachlorobenzene	ND	350
Pentachlorophenol	ND	890
Phenanthrene	ND	350
Anthracene	ND	350
Di-n-butylphthalate	ND	350
Carbazole	ND	350
Fluoranthene	ND	350
Pyren e	ND	350
Butylbenzylphthalate	ND	350
B-enzo(a)anthracene	ND	350
hrysene	ND	350
_3'-Dichlorobenzidine	ND	350
bis(2-Ethylhexyl)phthalate	ND	350
Di-n-octylphthalate	ND	350
Benz (b)fluoranthene	ND	350
Benzo(k)fluoranthene	ND	350
Benzo(a)pyrene	ND	350
Indeno(1,2,3-cd)pyrene	ND	350
Dibenz(a,h)anthracene	ND	350
Benzo(g,h,i)perylene	ND	350
		QC B

QC Batch: S0805-B2

2-Fluorophenol 72%
Phenol-d5 64%
2-Chlorophenol-d4 72%
2,4,6-Tribromophenol 132% *
1,2-Dichlorobenzene-d4 59%
Nitrobenzene-d5 59%

2-Fluorobiphenyl 71%

p-Terphenyl-d14 118%

ND = Not detected

Surrogate Recovery:

Reported at below the Reporting Limit

1 475 Motro Center Boulevard Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499

CHAIN-OF-CUSTODY RECORD

OMPANY FWEA	ے ر		が重	Nall.	РНО	ME 2	4-66DT	COM	PANY		明清	超過	11 to	THE WAY	<u>ं</u>	Till	UEF	PIIO		HELE	感期間		reference n:
NAME DAVIN PETERSON FAX				NAM	Æ							FAX				7							
DORESS 1446 DANSVILLEND.			ADDRESS								<u></u>					TURNAROUNO TIME							
LIENT PROJECT NAME:	N6570~N	tue	Rt	0150				CITY	/ST/Z	P						No	· · · · · ·					- 4	8/72
Davisville		cue	M1	T	1 #:		CLIENT P.O.A	1			J ô	/			The	SEON.	ESTEC	ANA	LYSE	s /	///		
SAMPLE IDENTIFICATION	Date/Time Sampled	COMPOSITE	GRAB	WATER	SOIL	OTHER	LAB ID	OF CONTAINERS		1pr			IN CO	od de de la la la la la la la la la la la la la	/	//			//				mmer12
VEBS28 55 P40-1	7/31 1/105		×		 			-	0	1	X	(文)			_		_	\leftarrow	/-	\leftarrow	/		
	,																 		<u> </u>				
	,																		-				
	. /																				 		
	,																			-			
	,																				<u> </u>		
	,		_																				
	/																						
	/		_																				
										Ŀ		٠											,
							······································											٠					
EA	/		212					<u> </u>															
FO RELINOU		7/5	DATE	//ME			ACCE	Z	Oz.	non.			4	TIME			KKOIT NEP T						COOLER TEM
nd			-	<u>'</u>									1	,			n	El	OB	4			
t				,										,	\neg								

Price

Sampled

7/31/97

Received

7/31/97

TPH

B

b Project #:

D1191

ient Name:

Foster Wheeler

ient Proi #:

1284-0006

ient PO#:

000620

oject Name:

Davisville

ite Due:

8/5/97

tal Price:

\$

nject Mgr:

EAL **PAS** lesman:

ьID

l Reg'd:

impleted?:

YES

NA

Client ID

DV-EBS28SSP40-2

Matrix

SL

Analysis TPH 418.1

GRO SVOC 8270

VOC 8240

Logged In By:

Reviewed By:

Date: 4-1-97

BNA Herb P/P

Met V-GC V-MS Sub

TPH Herb PA Wet V-GC V-MS Met

Wet

TES:

UGINAL REPORT GOES TO:

ster Wheeler Euvironmental Corp.

) Atlantic Avenue ston, MA 02210

Attn: Dave Peterson

Phone: 617-457-8200

Fax: 617-457-8498

INVOICE GOES TO:

Foster Wheeler Environmental Corp.

Attn Rite Lee

2300 Lincoln Hwy East, One Oxford Valley

Langhome, PA 19047

8/1/97 11:- AM

Page 1

Lab Project #: .

Analysis Report: Total Petroleum Hydrocarbons

Client: Foster Wheeler Environmental Corp.

Analysis: Method 418.1

Matrix Soil

)

Concentration in: mg/kg, dry weight basis

		Reporting						
Lab ID	Client ID	Result	% Solid	Limit	Analysis Date			
D1184-01 D1184-02	DV-E8\$28-P03 DV-E8\$28-P45	88 5,100	89 44	25 2,500	8/4/97 8/4/97			

QAQC		, ,	
Method Blank 10804-B1	ND	22	8/4/97
Lab Control Spike (% Recovery)			
10804-LCS1	102		8/4/97

Analysis Report: Gasoline Range Organics (GRO)

Client: Foster Wheeler Environmental Corp.

Analysis. GRO by GC-FID

Matrox: Soil

Concentration in. mg/kg, dry weight basis

Lab ID	Client ID	Result	Reporting <u>Limit</u>	% Solid	Surrogate Recovery	Analysis Date
D1184-01	DV-EBS28-P03	ND	0.56	89	76	8/6/97
D1184-02	DV-EBS28-P45	ND	1.1	44	93	8/6/97

QA/QC				
Method Blank				
V4B0806A	ND	0.50	66	8/6/97
Lab Control Sample (% Re	covery)			
V4L0806A	112		92	8/6/97

Analysis Report: Semivolatile Organic Compounds

Clint: Foster Wheeler Environmental Corp.

Cli nt ID: DV-EBS28-P03

Lab ID: D1184-01 Analysis: Method 8270 Analysis Date: 8/4/97
Matrix: Soil, 89% solids

Concentration in: ug/kg, dry weight basis

Dilution 1

		Reporting
<u>Analyte</u>	Results	<u>Limits</u>
Phenol	ND	370
bis(2-Chloroethyl)ether	ND	370
2-Chlorophenol	ND	370
1,3-Oichlorobenzene	ND	370
1,4-Dichlorobenzene	ND	370
1,2-Dichlorobenzene	ND	370
2-Methylphenol	ND	370
2.2'-oxybis(1-Chloropropane)	ND	370
4-Methylphenol	ND ·	370
n-Nitroso-di-n-propylamine	ND	370
Hexachloroethane	ND	370
Nikrobenzene	ND	370
Iscaharone	ND	370
2-Nitrophenol	ND	370
2,4-Dimethylphenol	ND	370
bis(2-Chloroethoxy)methane	ND	370
2,4-Dichlorophenol	ND	370
1,2,4-Trichlorobenzene	ND	370
Naphthalene	ND	370
4-Chloroaniline	ND	370
Hexachlorobutadiene	ND	370
4 -Chloro-3-methylphenol	ND	370
2-Methylnaphthalene	ND	370
Hexachlorocyclopentadiene	ND	370
2,4,6-Trichlorophenol	ND	370
2,4,5-Trichlorophenol	ND	930
2-Chloronaphthalene	ND ·	370
2-Nitroaniline	ND	930
Dimethylphthalate	ND	370
Acenaphthylene	ND	370
2 6-Dinitrotoluene	ND	370
3-Nitroaniline	ND	930
Acenaphthene	ND	370
2.4-Dinitrophenol	ND	930
4-Nitrophenol		930
	D	
Dibenzofuran	ND	370 370
2.4-Dinitrotoluene	ND	370

Client ID: DV-EBS28-P03

Lab ID, D1184-01

Analyte	Results	Reporting Limits
1000710	ricould	Cums
Diethylphthalate	ND	370
Fluorene	ND	370
4-Chlorophenyl-phenylether	ND	370
4-Nitroaniline	ND	930
4,6-Dinitro-2-methylphenol	ND	930
n-Nitrosodiphenylamine	ND	370
4-Bromophenyl-phenylether	ND	370
Hexachlorobenzene	ND	370
Pentachlorophenol	ND	930
Phenanthrene	ND	370
Anthracen	ND	370
Di-n-butylphthalate	ND	370
Carbazole	ND	370
Fluoranthene	ND	370
Pyrene	ND	370
Butylbenzylphthalate	ND	370
Benzo(a)anthracene	ND	370
Chrysene	ND	370
3,3'-Dichlorobenzidine	ND	370
bis(2-Ethylhexyl)phthalate	ND	370
Di-n-octylphthalate	ND	370
Benzo(b)fluoranthene	ND	370
Benzo(k)fluoranthene	ND	370
Benzo(a)pyrene	ND	370
Inderio(1,2,3-cd)pyrene	ND	370
Oibenz(a,h)anthracene	ND	370
Benzo(g,h,i)perylene	ND	370
		QC Batch: S0804-B1
Surrogate Recovery:		20 03.5 0000707
2-Fluorophenol	34%	
Phenol-d5	43%	
2-Chloroph nol-d4	45%	
2,4,6-Tribromophenol	72%	
4.0.01.61	7 4 7 7	

52%

50%

64%

92%

ND = Not detected

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

1,2-Dichlorobenzene-d4

Analysis Report: Semivolatile Organic Compounds

Client, Foster Wheeler Environmental Corp.

Client ID: DV-EBS28-P45

7

Lab ID: D1184-02 Analysis: Method 8270 Analysis Date: 8/5/97 Matrix: Soil, 44% solids

Concentration in: ug/kg, dry weight basis

Dilution: 50

		Reporting
<u>Anatyte</u>	Results	<u>Limits</u>
5		
Phenol	ND	38,000
bis(2-Chloroethyl)ether	ND	38,000
2-Chlorophenol	ND	38,000
1,3-Dichlorobenzene	ND	38,000
1,4-Dichlorobenzene	ND	38,000
1,2-Dichlorobenzene	ND	38,000
2-M thylphenol	ND	38,000
2,2'-oxybis(1-Chloropropane)	ND	38,000
4-Methylphenol	ND	38,000
n-Nitroso-di-n-propylamine	ND	38,060
/ Hexachlomethane	ND	38 ,00 0
Nitrobenzene	ND	38,000
Isophorone	. ND	38,000
2-Nitrophenol	ND	38,000
2,4-Dimethylphenol	ND	38,000
bis(2-Chloroethoxy)methane	ND	38,000
2,4-Dichlorophenol	ND	38,000
1,2,4-Trichlorobenzene	ND	38,000
Naphthalene	ИD	38,000
4-Chloroaniline	ND	38,000
Hexachlorobutadiene	ND	38,000
4-Chloro-3-methylphenol	ND	38,000
2-Methylnaphthalene	ND	38,000
Hexachlorocyclopentadiene	ND	38,000
2,4,6-Trichlorophenol	ND	38,000
2,4,5-Trichlorophenol	ND	94,000
2-Chloronaphthalene	ND	38,000
2-Nitroaniine	ND	94,000
Dimethylphthalate	ND	38,000
Acenaphthylene		•
• •	19,000 J	38,000
2,6-Dinitrotoluene	ND	38,000
3-Nitroaniline	ND	94,000
Acenaphthene	740,000 D	38,000
2,4-Dinitrophenol	ND	94,000
4-Nitrophenol	ND	94,000
Dibenzofuran	220,000	38,000
2,4-Dinitrotoluene	ND	38,000

MITKEM CORPORATION

Client ID: DV-EBS28-P45

Lab ID: D1184-02

		Reporting
<u>Analyte</u>	Results	<u>Limits</u>
Diothylahthatata	ND	28 000
Diethylphthalate Fluorene		38,000
	690,000 D	38,000
4-Chlorophenyl-phenylether 4-Nitroaniline	ND ND	38,000
		94,000
4,6-Dinitro-2-methylphenol	ND	94,000
n-Nitrosodiphenylamine	ND	38,000
4-Bromophenyl-phenylether	ND	38,000
Hexachlorobenzene	ND	38,000
Pentachlorophenol	ND	94,000
Phenanthrene	570,000 D	38,000
Anthracene	840,000 D	38,000
Di-n-butylphthalate	ND	38,000
Carbazole	11,000 J	38,000
Fluoranthene	2,300,000 D	38,000
Pyrene	2,800,000 D	38,000
Butylbenzylphthalate	ND	38,000
Benz (a)anthracene	620,000 D	38,000
Chrysene	620,000 D	38,000
3,3'-Dichlorobenzidine	ND	38,000
bis(2-Ethylhexyl)phthalate	ND	38,000
Oi-n-octylphthalate	ND	38,000
Benzo(b)fluoranthene	570,000 D	38,000
Benzo(k)fluoranthene	220,000	38,000
Benzo(a)pyrene	320,000 D	38,000
Indeno(1,2,3-cd)pyrene	74,000	38,000
Dibenz(a,h)anthracene	ND	38,000
Benzo(g,h,i)perylene	68,000	38,000

QC Batch: S0804-B1

Surrogate Recovery: DL 2-Fluoraphenol Phenol-d5 DL DL 2-Chl rophenol-d4 DL 2,4,6-Tribromophenol DL 1,2-Dichlorobenzene-d4 DL Nitrobenzene-d5 2-Fluorobiphenyl DL DL p-Terphenyl-d14

PL = Diluted out

ND = Not detected

. بالارت

Analysis Report: Semivolatile Organic Compounds

Client: Foster Wheeler Environmental Corp.

Client ID:

Lab ID: Method Blank, S0804-B1

Analysis: Method 8270

Analysis Date: 8/4/97

Matrix: Soil

Concentration in: ug/kg

Dilution: 1

		Reporting
<u>Analyte</u>	Results	Limits
Phenol	ND	330
bis(2-Chloroethyl)ether	ND	330
2-Chlorophenol	ND	330
1,3-Dichlorobenzene	ND	330
1,4-Dichlorobenzene	ND	330
1,2-Dichlorobenzene	ND	330
2-Methylphenol	ND	330
2,2'-oxybis(1-Chloropropane)	ND	330
4-Methylphenol	ND	330
n-Nitroso-di-n-propylamine	ND	. 330
Hexachloroethane	ND	330
Nitrobenzene	ND	330
Isophorone .	ND	330
2-Nitrophenol	ND	330
2,4-Dimethylphenol	ND	330
bis(2-Chloroethoxy)methane	ND	330
2,4-Dichlorophenol	ND	330
1,2,4-Trichlorobenzene	ND	330
Naphthalene	ND	330
4-Chloroaniline	ND	330
Hexachlorobutadiene	ND	330
4-Chloro-3-methylphenol	ND	330
2-Methylnaphthalene	ND	330
Hexachlorocyclopentadiene	ND	330
2,4,6-Trichlorophenol	ND	330
2,4,5-Trichlorophenol	- ND	830
2-Chloronaphthalene	ND	330
2-Nitroaniline	ND	830
Dimethylphthalate	ND	330
Acenaphthylene	ND	330
2,6-Dinitrotoluene	ND	330
3-Nitroaniline	ND	830
Acenaphthene	ND	330
2,4-Dinitrophenol	ND	830
4-Nitrophenol	ND	830
Dibenzofuran	ND	330
2.4-Dinitrotoluene	ND	330
	110	~~

Client ID:

Lab ID Method Blank, S0804-B1

		Reporting	
Analyte	Results	Limits	
Diethylphthalate	ND	330	
Fluoren	ND	330	
4-Chlorophenyl-phenylether	ND	330	
4-Nitroanilin	ND	830	
4,6-Dinitro-2-methylphenol	ND	830	
n-Nitrosodiphenylamine	ND	330	
4-Bromophenyl-phenylether	ND	330	
Hexachlorobenzene	ND	330	
Pentachlorophenol	ND	830	
Phenanthrene	ND	330	
Anthracene	ND	330	
Di-n-butylphthalate	ND	330	
Carbazole	ND	330	
Fluoranthene	ND	330	
Pyren	ND	330	
Butylbenzylphthalate	ND	330	
Benzo(a)anthracene	ND	330	
Chrysene	ND	330	
3,3'-Dichlorobenzidine	ND	330	
bis(2-Ethylhexyl)phthalate	ND	330	
Di-n-octylphthalate	ND	330	
Benzo(b)fluoranthene	ND	330	
Benzo(k)flu ranthene	ND	330	
Benzo(a)pyrene	ND	330	
Indeno(1,2,3-cd)pyrene	ND	330	
Dibenz(a,h)anthracene	ND	330	
Benzo(g,h,i)perylene	ND	330	
		QC Batch: S08	04-B1
Surrogate Recovery:			
2-Fluorophenol	51%		
Phenol-d5	56%		
2-Chlorophenol-d4	60%		
2_4,6-Tribromophenol	71%		
1_2-Dichlorobenzene-d4	60%		·
Nitrobenzene-d5	66%		
	- · · ·		

ND = Not detected

2-Fluorobiphenyl

p-Terphenyl-d14

67%

93%

Analysis Report: Volatile Organic Compounds

Client: Foster Wheeler Environmental Corp.

Client ID: DV-EBS28-P03

Lab ID: D1184-01 Analysis: Method 8240 Analysis Date: 8/2/97 Matrix: Soil, 89% solids

Concentration in: ug/kg, dry weight basis

Dilution: 1

		Reporting
Analyte	Results	<u>Limits</u>
Chloromethane	ND	6
Vinyl chloride	ND	6
Bromom thane	ND	6
Chloroethane	ND	6
1,1-Dichloroethene	ND	6
Carbon disulfide	ND	6
Acetone	22	6
Methylene chloride	ND	6
trans-1,2-Dichloroethene	ND	6
1,1-Dichloroethane	ИD	6
cis-1,2-Dichloroethene	ND	6
2-Butanone	ND	6
Chloroform	ND	6
1,2-Dichloroethane	ND	6
1,1,1-Trichloroethane	ND	6
Carbon tetrachloride	ND	6
Benzene	ND	6
Trichloroethene	ND	6
1,2-Dichloropropane	ND	6
Bromodichloromethane	ND	6
cis-1,3-Dichloropropene	ND	6
trans-1,3-Dichloropropene	ND	6
1,1,2-Trichloroethane	ND	6
Dibromochloromethane	ND	6
Bromoform	ND	6
4-Methyl-2-pentanone	ND	6
Toluene	ND	6
Tetrachloroethene	ND	6
2-Hexanone	ND	6
Chlorobenzene	ND	6
Ethylbenzene	ND	6
Xylenes, total	ND	6
•	ND	6
Styrene	ND	6
1,1,2,2-Tetrachioroethane	עט	U
Surrogate Recovery:	•	QC Batch: V1B0802A
1,2-Dichloroethane-d4	104%	
Toluene-d8	104%	
Bromofluorobenzene	98%	

Analysis Report: Semivolatile Organic Compounds

Lab Control Summary

72

70

75

56 80

Client ⁻	Foster	Wheeler	Environmental	Corp.
---------------------	--------	---------	----------------------	-------

ronmental Corp. Matrix Soil

Lab ID for Blank Spike: S0804-LCS1

Analysis: Method 8270 Analysis Date for Blank Spike: 8/4/97

Analyte	% Recovery
Phenoi	60
2-Chlorophenol	62
1,4-Dichlorobenzene	62
n-Nitroso-di-n-propylamine	70
1,2,4-Trichlorobenzene	70
4-Chloro-3-methylphenol	75

QC Batch: S0804-B1

Pentachlorophenol

Acenaphthene

4-Nitrophenol 2,4-Dinitrotoluene

Pyrene

Analysis Report: Volatile Organic Compounds

Client: Foster Wheeler Environmental Corp.

Client ID: DV-EBS28-P45

Lab ID: D1184-02 Analysis: Method 8240 Analysis Date: 8/2/97 Matrix Soil, 44% solids

Concentration in: ug/kg, dry weight basis

Dilution: 1

		Reporting
Analyte	Results	<u>Limits</u>
		
Chloromethane	ND	11
Vinyl chloride	ND	11
Bromomethane	ND	11
Chloroethane	ND	11
1.1-Dichloroethene	ND	11
Carbon disulfide	ND	11
Acetone	560 D	11
Methylene chloride	ND	11
trans-1,2-Dichloroethene	ND	11
1,1-Dichloroethane	ND	. 11
cis-1,2-Dichloroethene	ND	11
2-Butanone	ND	11
Shloroform	ND	11
1,2-Dichloroethane	ND	11
1,1,1-Trichlorosthane	ND	11
Carbon tetrachloride	ND	11
Benz ne	ND .	11
Trichloroethene	ND	11
1,2-Dichloropropane	ND	- 11
Bromodichloromethane	ND	11
cis-1,3-Dichloropropene	ND	11
trans-1,3-Dichloropropene	ND	11
1,1,2-Trichloroethane	ND	11
Dibromochloromethane	ND	11
Bromoform	ND	11
4-Methyl-2-pentanone	ND	11
Toluene	ND	11
Tetrachloroethene	ND	11
2-Hexanone	ND	11
Chlorobenzene	ND	11
Ethylbenzene	ND	- 11
Xylenes, total	12	11
Styrene	ND	11
1,1,2,2-Tetrachloroethane	ND	11
•		
Surrogate Recovery:		QC Batch: V1B08024
1,2-Dichloroethane-d4	110%	
Tolu ne-d8	99%	
Bromofluorobenzene	85%	

Analysis Report: Volatile Organic Compounds

Client Foster Wheeler Environmental Corp

Client ID:

Lab ID Method Blank, V1B0802A

Analysis: Method 8240

Analysis Date: 8/2/97

Matrix: Soil

Concentration in: ug/kg

Dilution: 1

<u>Analyte</u>	Results	Reporting <u>Limits</u>
Chloromethane	ND	5
Vinyl chloride	ND	5
Bromomethane	ND	5
Chloroethane	ND ·	5
1,1-Dichloroethene	ND	5
Carbon disulfide	ND	. 5
Aceton	ND	5
Methyl ne chlonde	ND	5
trans-1,2-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
cis-1,2-Dichloroethene	ND	5
2-Butanone	ND	. 5
Chloroform	ND	5
1,2-Dichloroethane	ND	5
1,1,1-Trichloroethane	ND	5
Carbon tetrachloride	ND	5
Benzene	ND	5
Trichloroethene	ND	5
1,2-Dichloropropane	ND	5
Bromodichloromethane	ND	5
cis-1,3-Dichloropropene	ND	5
trans-1,3-Dichloropropene	ND	5
1,1,2-Trichloroethane	ИD	5
Dibromochloromethane	ND	5
Bromoform	ND	5
4-Methyl-2-pentanone	ИD	5
Toluene	ND	5
Tetrachloroethene	ND	5
2-Hexanone	ND	5
Chloroberizene	ND	· 5
Ethylbenzene	ND	5
Xylenes, total	ND	5
Styrene	ND	5
1,1,2,2-Tetrachloroethane	ND	5

Surrogate Recovery:

1,2-Dichloroethane-d4 103%
Toluene-d8 104%
Bromofluorobenzene 102%

QC Batch: V1B0802A

Price

Project #:

D1184

nt Name:

Foster Wheeler

nt Proj #:

1284-0006

at PO#:

000620

ect Name: Davisville 8/6/97

: Duc:

| Price: S

ect Mgr: EAL

sman:

PAS

Reg'd:

NA

ipleted?:

YES

m	Client II
	DV DDC

DV-EBS28-PO3

DV-EBS28-P45

Matrix SL

GRO SVOC 8270

VOC 8240

SL

TPH 418.1 GRO

Analysis

TPH 418.1

SVOC 8270

VOC 8240

Logged In Av:

Reviewed By:

Date: 1-31-97

Rerb

P/P

0

Wet

Time: 6:02

Met V-GC V-MS Sub

7/30/97

TPH

TPII

<u>IR</u>

Received

7/30/97

7/30/97

7/30/97

1

BNA

1 P/P Wet

Sub 0 0

TES:

GINAL REPORT GOES TO:

er Wheeler Environmental Corp.

5 Davisville Rd. ingstown, RI 02852 Attn: Tricia Sumner

Phone: 294-6605 Fax. 294-9122

INVOICE GOES TO:

Foster Wheeler Environmental Corp.

2300 Lincoln Hwy East, One Oxford Valley Langhorne, l'A 19047

Attn: Rita Lee

* In Division

175 Metro Center Houlevard Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499

1232 East Broadway Road, Suite 210 • Tempe, Arizona 85282 (602 303-9535 • Fax (602) 921-2883

Page ___ lof)

NAME TICH SHAPE FAX ADDRESS IN HE DAUGNIE ROS CIENT PROJECT NAME DAVISHIE CONMININTS CONMININTS CONMININTS CONMININTS CONMININTS CONTINUE TOTAL TOTAL ADDITIONAL REMARKS: COOLER TE TRANSITION TRANSITION TRANSITION TRANSITION TRANSITION TRANSITION TOTAL T	·	(002 303-93,)) - [ax (ou	4) 941	-1923				;												•			
ADDRESS 1446 DAUGUILE RO DAUGUILE RO DAUGUILE RO TUNNAROUND TO DATE TIME CLIENT PROJECT FAME CLIENT PROJECT NAME DIVISIAND CLIENT PROJECT NAME CLIENT PROJECT NAME CLIENT PROJECT NAME DIVISIAND ARRIVED DATE TIME SAMPLED DO S S S S S S S S S S S S S S S S S S S			RDIO		NE	PHO	NE .		COM	PANY		WALE .			12:17.3	201191	भाग	' 1				以		REFERENC	<u> </u>
ADDRESS IM 4 DAUSS IN TEA CITY TO THE DETUNNING TO THE PROJECT HAME CLIENT PROJECT HAME DATE TIME DATE TIME DATE TIME DATE TIME DATE TIME SAMPLE DOT POSS TO FOR THE SAMPLED TO T									NAM	E													-		-
CLIENT PROJECT NAME: CLIENT PROJECT P: CLIENT PROJECT P: CLIENT PROJECT P: CLIENT PROJECT P: CLIENT PROJECT P: CLIENT PROJECT P: CLIENT PROJECT P: CLIENT PROJECT P: CLIENT PROJECT P: CLIENT PROJECT P: CLIENT PROJECT P: COMINIENTS COM			-0	. 1	11001)		9 1166	ADD	RESS	, -		- , -		·\			1			1361		TUR	NAROUND 1	IME:
CLIENT PROJECT NAME CLIENT PROJECT #: CLIENT PO.R. CLIENT PO.R. CLIENT PO.R. REQUESTED ANALYSES	CITY/ST/ZIP	· chan P		77							// 5								IJ,	4-2	<u>~</u>	$-\mathcal{B}$	40	YAG É	
SAMPLE IDENTIFICATION DATESTIME SAMPLED BY DATESTIME ACCEPTEDBY DATESTIME ADDITIONAL REMARKS: COOLER TE	CLIENT PROJECT NAME:	75000	CLIE	NT PR	OJBC.	T #:		CLIENT P.O.M.		<u>,,/</u>		<u> </u>	4				Ž	45!	7.	41	 ++ 	hor-	1		
SAMPLE IDENTIFICATION DATESTIME SAMPLED DATESTIME SAMPLED DIV. 655 22 - 603 172 41 1500 Y X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	DAVISVYK 3		17	284	90	06 -	-	Ì					6/	<u>_</u>	1/		KEQU!	ESTED	ANA!	LYSE	s ' /	′ /	//	/	
DV - 66528- 045 7 3857 1/50 K Y	SAMPLE	DATE/TIME .	COMPOSITE	GRAB	WATER	TIOS	ОТНЕК	DE VIS	ō	1	79t/~	17 20 N	5.47		/	//	//		//	/	//		C	CTMBIAMC	
DY-CESSED- 045 7 12/87 1/50 X Y	DV-FBS 28-Po3	7/30 M7 1500		X		X		،سریر	1	1	K	K	X												
ISFR RECIBIOUSHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TE	DV- 66528- P45			X		4			≱ -	*	Y	Y	٧												
ISFA RECISEUSHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TE	·	}		<u> </u>		<u> </u>		7.00	ļ	ž															
ISFA RECITION SHED BY DATE-TIME ACCEPTED BY DATE-TIME ADDITIONAL REMARKS: COOLER TE		 		 	_	<u> </u>	-		-/	(
TSFA RECTINGUISHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TE			-	 		-	ļ		بحث	C.06															
SFR RELINGUISHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TE			 		-	-	-		1-	-							 								
RECIPIONSHED BY DATE-TIME ACCEPTED BY DATE-TIME ADDITIONAL REMARKS: COOLER TE			-	╁	-	-			-													ļ			
RECIPIOUSHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TE		 	-	-	┢	 	-		+		2			·							<u> </u>	ļ			
TSF4 RELIGIOUSHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TE		,		 	-	┢	 		-	-					<u> </u>	-						ļ			
RELINGUISHED BY DATE-TIME ACCEPTED BY DATE-TIME ADDITIONAL REMARKS: COOLER TE		,			-				+-											-		 			
7/30/87 /600 Meller Forms 73/45 /7:30		,		1		-	-		 	-												ļ. ——			
7/30/87 /600 Mollis Journes 730/1 /7:30	SF# RELINDU	SHED BY		DATE	TIME			ACC	מול	BY				DATE	JIME		ADDI	TIONA	L RE	MARK	.S:	L		COOLER	TEMP.
210	M. The	-	7/	30/17	160	0	M	Willing		res	~ <u>~</u>		7	rep)	1/2	20				•					
	240				<u> </u>																				1
3rd / 7 147 /	3rd								7		154	7		/	′										

WHITE: LABORATORY COPY

YELLOW: THE COPY

BINK: CITEM IS COLA

C To G

Appendix B-4

Review Item 28 (UST Area)

Test Pit Logs (EA/FWENC)

Review Item 28 (UST Area) Summary of Test Pit Logs (EA/FWENC)

Test Pit	Location	Dimensions	Comments
1	line 4 position 40	11 ft × 18 ft	Steel reinforcing rods within the foundation wall and a large
	(within the	× 8.5 ft	concrete and block slab that could not be broken with the
	foundation remnant)		backhoe were uncovered in this excavation. No evidence of
			USTs or stained and discolored soils were observed.
2	line 3 positions 20	45 ft × 18 ft	During the excavation process, the pump island was overturned
	through 60	× 11 ft	and pushed to one side. Two metal pipes were found extending
	(between the	ļ	from the pump island toward the foundation remnant. One pipe
	foundation remnant		was visible at the surface and the second pipe was located
	and pump island)		approximately 2 ft bgs. The pipe below ground surface was
		1	approximately 3 ft long and capped at the end. The pipe visible
			at the surface was approximately 2 ft long and appeared to be
]	used for electrical conduit. A jackhammer was used to break off a section of the pump island to determine if steel reinforcing rods
			were present. No reinforcing rods were found. The pump island
			contained three metal lightning rods, electrical conduit and
	•		wiring, and other piping associated with its past use. No
			evidence of USTs or stained and discolored soils were observed.
3	line 2 positions 40	30 ft × 18 ft	Two 6-in. diameter vertical steel pipes were encountered at
_	through 80	× 11 ft	approximately 4 ft bgs. One pipe was found to be embedded into
	(south of the pump		a large boulder. The excavation was continued around the second
	island)		pipe until it was able to be pulled from the ground with the
	,		backhoe at approximately 11 ft bgs. The pipe pulled from the
			ground was 10 ft long. No evidence of USTs or stained and
			discolored soils were observed.
4	line 5 positions 0	22 ft × 3 ft ×	No evidence of USTs or stained and discolored soils were
	through 20	9 ft	observed.
	(north of the foundation remnant)		
5	line 6 positions 50	17 ft × 6 ft ×	No evidence of USTs or stained and discolored soils were
,	through 60	7.5 ft	observed.
	(southern edge of		
	the grid nest to the		
	paved road)		
6	line 3 positions 80	45 ft × 10 ft	No evidence of USTs or stained and discolored soils were
	through 120	× 10 ft	observed.
	(east of the pump	}	
	island and		
	foundation remnant)	40.6	Na
7	line 5 positions 20	42 ft × 7 ft ×	No evidence of USTs or stained and discolored soils were observed.
	through 60	8 ft	DDSG VCU.
	(adjacent to test pits 4 and 5)		
8	line 2 positions 30	30 ft × 4 ft ×	Wood, metal, and glass debris were encountered at 6 ft bgs. A
J	through 60	6 ft	strong petroleum odor was also noted. A metal pipe was
	(south of Building		uncovered at the east end of the trench next to the asphalt road.
	E-107)		The excavation was continued to follow the pipe to the north.
	•		The pipe entered a metal pontoon tank that was uncovered
		-	approximately 6 ft to the north. This tank was determined to be
			one of the septic tanks identified as EBS Review Item 60 that was
			not found during earlier investigations. (Two tanks and the pipe
i			were subsequently removed.)
9	line 1 position 45	20 ft × 3 ft ×	Wood, metal, and glass debris were encountered at 6 ft bgs. A
	(adjacent to the	6 ft	strong petroleum odor was also noted. A metal pipe was
	asphalt paved road		uncovered at the east end of the excavation that was a
İ	encircling the		continuation of the pipe found in test pit 8. The pipe extended
	wooded area south		south under the unnamed asphalt road and approximately an
l	of Building E-107)		additional 50 ft south of the road into the wooded area, where it
	= *		ended (no other connection at this end of the pipe was found).

EBS Review Item 28 - Test Pit 1

Location: Line 4 Position 40 in Pump Island Area. Test pit located within the remnant

foundation wall.

Dimensions: 11 ft by 18 ft by 8.5 ft deep. Position 40 is roughly in the center of the test pit.

Soil Profile: 0-4" Black, silty organic soil.

4" - 8.5' Black/brown, silty - coarse sand with rounded stones to 3 in. Few

large stones to 2 ft diameter encountered. Ground water at 8 ft

below ground surface.

Reinforcing steel rods within the remnant of the foundation wall was found in this excavati n. A large concrete and block slab was found at the bottom of the excavation that could not be moved with the backhoe.

No stained or discolored soils or evidence of USTs were observed in this excavation.

EBS Review Item 28 - Test Pit 2

Location: Line 3 Positions 20 through 60 in Pump Island Area. Test pit was located

between the remnant foundation wall and the pump island.

Dimensions: 45 ft by 18 ft by 11 ft deep.

Soil Profile: 0 - 4" Black, silty organic soil.

4" - 11' Black/brown, silty - coarse sand with rounded stones to 2 in. Few

large stones to 2 ft diameter encountered at the bottom of the test

pit.

This excavation covered the entire area between the pump island and the foundation remnant. The pump island was overturned during the process of excavation and moved out of the way. Overturning the pump island exposed a network of piping, electrical conduit and lines, and 3 lightning rods approximately 3 ft long. Two capped steel pipes exited the bottom of the pump island to the north. The concrete pump island was broken with a jackhammer to determine if there was any reinforcing steel present, none was found in the pump island.

No stained or discolored soils or evidence of USTs were observed in this excavation.

EBS Review Item 28 - Test Pit 3

Location: Line 2 Position 40 through 80, adjacent to the south side of the pump island.

Dimensions: 30 ft by 18 ft by 11 ft deep.

Soil Profile: 0-4" - Black silty organic soil.

4" - 11' - Black/brown, silty - coarse sand with rounded stones from 1 " tp 2 ft diameter.

At approximately 4 ft below ground surface, 2 vertical pipes approximately 3 ft apart were uncovered. Excavation continued around the pipes until it was found that one pipe was drilled into rock. Excavation continued around the remaining pipe until it was pulled from the ground at 11 ft below ground surface. The pipes were 6 in diameter and 10 ft long.

No other metal objects, stained or discolored soils or evidence of USTs were encountered in this excavation.

EBS Review Item 28 - Test Pit 4

Location: Line 5 Positions 0-20. This test pit was adjacent to Westcott Road.

Dimensions: 22 ft by 3 ft by 9 ft deep. Excavation began at the edge of Westcott Road.

Soil Profile: 0-4" Black silty organic soil.

4" - 9' Brown, medium - coarse sand with stones to 6 in. Few large stones to 2 ft diameter.

No other metal objects, stained or discolored soils, or evidence of USTs were observed in this excavation.

EBS Review Item 28 - Test Pit 5

Location: Line 5 Positions 0-20. This test pit was adjacent to Westcott Road.

Dimensions: 17 ft by 6 ft by 7.5 ft deep. Excavation began at the edge of Westcott Road.

Soil Profile: 0-6" Black silty organic soil.

6" - 2' Black silty sand.

2' - 7.5' Brown, medium - coarse sand with stones to 2 ft diameter.

No other metal objects, stained or discolored soils or evidence of USTs were observed in this excavation.

EBS Review Item 28 - Test Pit 6

Location: Line 3 Positions 80 through 120.

Dimensions: 45 ft by 10 ft by 10 ft deep.

Soil Profile: 0-4" Black silty organic soil.

4" - 4' Black silty - medium sand with rounded stones to 3" diameter. Few large stones to 3 ft diameter.

4' - 11' Brown/black medium - coarse sand with 25% fine gravel. Groundwater at 7 ft below ground surface.

At position 100, a 6 in layer of tan medium sand at 1 ft below ground surface was present. No other metal objects, stained or discolored soils or evidence of USTs were observed in this excavation.

EBS Review Item 28 - Test Pit 7

Location: Line 5 Positions 20 through 60.

Dimensions: 42 ft by 7 ft by 8 ft deep.

Soil Profile: 0-1' Brown/black silty organic soil.

1'-2' Black silty - medium sand with rounded stones to 1" diameter.

2' - 4' Tan fine - medium sand with stones to 2" diameter.

4' - 8' Black silty - medium sand with stones to 1 ft diameter.

No other metal objects, stained or discolored soils or evidence of USTs were observed in this excavation.

EBS Review Item 28 - Test Pit 8

Location: Line 2 Positions 30 through 60. Test Pit 8 is located in the grid adjacent to the

southeast corner of Building E-107.

Dimensions: 30 ft by 4 ft by 6 ft deep.

Soil Profile: 0-1' Black silty sand.

1'-3' Tan medium - coarse sand with rounded stones to 2 ft diameter.

3' - 6' Black silty snad with 20% clay. Approximately 50% of this layer consists of wood, metal, and glass debris with a strong petroeum odor.

A pipe was uncovered at the east end of the excavation. The pipe was then followed to the north approximately 3 ft to a metal pontoon septic tank. The pipe was broken in several places.

No other metal objects, stained or discolored soils or evidence of USTs were observed in this excavation.

EBS Review Item 28 - Test Pit 9

Location: Line 1 Position 45. Test Pit 9 is located in the grid adjacent to the southeast

corner of Building E-107.

Dimensions: 20 ft by 3 ft by 6 ft deep.

Soil Profile: 0-1' Black silty sand.

1'-3' Tan medium - coarse sand with rounded stones to 2 ft diameter.

3' - 6' Black silty sand with 20% clay. Approximately 50% of this layer consists of wood, metal, and glass debris with a strong petroeum odor.

A pipe was uncovered at the east end of the excavation. The pipe was broken in several places.

Appendix B-5

Review Item 60 (Septic Tanks Building E-107)

Tank Removal - Data Validation Report (included in Volume 2)

EBS Follow-on Investigation NCBC Davisville, RI

Review Item	Location	Sample Number	Date Collected	SDG#	Matrix	Compounds Analyzed
58	Building E-319	EBS58-RSPT-02	7/17	971063	soil	TPH 418.1,8015M, VOC, SVOC RCRA Metals
58	Building E-319	EBS58-RSPT-03 (DUP OF 01)	7/17	971063	soil	TPH 418.1,8015M, VOC, SVOC RCRA Metals
60	Building E-107	EBS-60-RSPT- 01	7/14	971023	soil	TPH 418.1, TPH 8015M, VOC, SVOC RCRA Metals
60	Building E-107	EBS-60-RSPT- 02	7/14	971023	soil	TPH 418.1, TPH 8015M, VOC, SVOC RCRA Metals
71	Elevated TPH Operable Unit	EBS71-SB02-0- 6	7/17	971063	soil	TPH 418.1, VOC, SVOC
71	Elevated TPH Operable Unit	EBS71-SB02-2- 4	7/17	971063	soil	TPH 418.1, VOC, SVOC
71	Elevated TPH Operable, Unit	EBS71-SB06-0-	7/17	971063	lioz	TPH 418.1, VOC, SVOC
71	Elevated TPH Operable Unit	EBS71-SB06-2-	7/17	971063	soil	TPH 418.1, VOC, SVOC
71	Elevated TPH Operable Unit	EBS-71-RSB-03- 0-1.75	7/2	970965	soil	TPH 418.1, VOC, SVOC
71	Elevated TPH Operable Unit	EBS-71-RSS-10	2/12	970965	soil	TPH 418.1, VOC, SVOC
74	Former Building W-319	EBS74-GW-01	7/17	971071	ground water	voc, svoc
74	Former Building W-319	EBS74-GW-02	7/17	871072	ground water	voc, syoc

EBS Follow-on Investigation NCBC Davisville, RI

Review Item	Location	Sample Number	Date Collected	SDG#	Matrix	Compounds Analyzed
74	Former Building W-319	EBS74-GW-03	7/17	971072	ground water	voc, svoc
74	Former Building W-319	EBS74-GW-04	7/17	971072	ground water	voc, svoc
74	Former Building W-319	EBS74-MW-01	7/18	971073	ground water	voc, svoc
74	Former Building W-319	EBS74-MW-01- DUPE	7/18	971073	ground water	voc, svoc
74	Former Building W-319	EBS74-MW-02	7/18	971073	ground water	VOC, SVOC
75	Building 279	EBS75-SB02-2- 3	7/17	971063	soil	TPH 418.1,8015M, VOC, RCRA Metals
SITE 11		11-SB01-0-2	7/16		soil	VOC,SVOC
SITE II		11-SB01-4-5	7/16	971051	soil	voc,svoc
SITE 11		11-SB01-34-36	7/16	971051	soil	VOC,SVOC
SITE 11		11-SB02-0-2	7/17	971051	soil	VOC,SVOC
SITE 11		11-SB02-5-6	7/17	971051	soil	VOC,SVOC
SITE 11		11-GW-01S	7/16	971051	ground water	VOC,SVOC
SITE 11		11-GW-01P	7/16	971051	ground water	VOC,SVOC
Rinsate 1						
Rinsate 2		,				
Rinsate 3		EBS74RINSE	7/18			**
		Trip Blank 1	7/17		water	VOC
		Trip Blank 2	7/18	971071	water	VOC

APPENDIX C

PHASE II EBS FOLLOW-ON ADDENDUM II INVESTIGATION

- C-1 Review Item 28 (Former Creosote Dip Tank and Fire Fighting Training Areas)
 Boring Logs
 Data Validation Reports (included in Volume 2)
- C-2 Review Item 28 (Former Creosote Dip Tank and Fire Fighting Training Areas)
 Survey Data

Appendix C-1

Review Item 28 (Former Creosote Dip Tank and Fire Fighting Training Areas)

Boring Logs
Data Validation Reports (included in Volume 2)

										Job. No. Client: Hansoom Air Force Base Location:
			EA Eng	gine ri Techno			•			GO787 31 U.S. Novy; North Du EBS-Z8 Drilling Method: Boring No.
E			LOG O	F SOIL	. BORI	NG				140 16 hamer falling 28-5B-17
Coordi								_		Sampling Method:
	e Elevation iser Elévat							-		Sheet of Drilling Water Level Start Drilling Finish
								•		Date 10-13-98 Times 10-13-98
		•								Surface Conditions: Grass brush 930 1000
Sample	1	Dpth	Samp #	PID	Blows		Ft	Π	uscs	
Туре	Driven/In. Recyrd	Csg.	/ depth (ft)	(ppm) Above bk	per 6"		bgs		Log	SOIL DESCRIPTION
SS	24/12		0-2	0	3	}	°	\vdash		0,2-Dark brown, dry Silfy SAND little gravel, trace organics (Dsurfax)
					7		1			The state of the s
eC.	24/4				12	 	2			2-4- Med-brown Silty JAND dry
25	14	<u> </u>	2-4	0	5		١,			7-4- Mod-brown silty JAND, drye trace gravel, losse
			.		2	Ĺ	ľ			
22	24/12		46	0	1 2		4			4-6- Med-brown fine SAND, dry, loose
13,	110	-		-	1		5	Н		
<u> </u>	216	 		ļ	4	-	6	\top		1-9-500d a to 14 1 = 0:00
22	24/2	l	6-8	0	박 92					6-8-Grading to Lt. brown, fine sand loose, pounded stone 7-8
					77		. 7			
22	24/		8-10	 	4		8			8-10- some as 6-8"
22	24/12	<u> </u>	0-10	0	13		9			* collected samples 128-58-17-8-10
1					10		ľ			
							0			BoH (9 10
-	 	╂		 			1			
<u> </u>	 	↓_					,			
1				•	<u> </u>		٠			
					ļ		3	Т	/4	
-	 	-	 	 			4			
<u> </u>	<u> · </u>	_	<u> </u>	<u> </u>			5			
	ļ		j	1	 -		ľ	\vdash		
	1						6			
-	 	+-	 	 	 -		7	Н		
	<u> </u>		<u> </u>	L						
1				1	 		В	H		
 	1	1	†				9			
-	 	-	 	-	<u> </u>		0	dash		
			<u>l</u>				L			
NOT	ES:									Drilling Contractor: Environmentel Drilling + Remodia: Brad Haare
									٠	Drilling Contractor: Environmental Drilling + Remodia
										Driller: Brad Hacke
										The state of the s
	L SPECI reen/Riser		HONS:		Scre	en Inte	rval:			Sandpack: Grout:
	n of Hole:				-	r Interv		_		Bentonite Cover:

E	X		EA Eng and T	echno	logy, l	nc.	•			Job. No. Glient: Hanssom Air Force Base 60787 31 V.S. Navy, North. Div. EBS-28 Drilling Method: Mobile 61 14016 hammer falling 30in ZB-SB-18
	nates: e Elevation iser Elévati							-		Sampling Method: 2" x 24" split Sheet of I Drilling Water Level Start Drilling Finish Date 10-17-94 Times 10-17-98 Surface Conditions: 9 (25) 9 (24)
Sample Type	Driven/In.	Dpth Csg.	Samp # / dèpth	PID (ppm)	Blows		Ft bgs		USCS Log	7-1/4-
55	Recvrd Z4/10		0-2	Above bk.	1 2		0		•	SOIL DESCRIPTION 0-2-Mid. brown, clry, 5-1/4 SAND 1. He gravel, 10050 troce
<u>u</u> 22	24/14 24/14 24/12 24/18		Z-4 4-6 6-8 8-10	0	2 1 1 1 1 2 2 2 2 38 29 14 11 10 11 12 38 29 14 11 11 11 12 13 14 11 11 11 11 11 11 11 11 11 11 11 11		1 2 3 4 5 6 7 8 9 0		SM	Organics 2-4 Same as 0-2 4-6 - Same as 2-4, most, wood Chips; dobris 6-8 - Same as 4-6; becoming wet. 8-10 - Med Gray, Gravel, > pounded (ock fragment, pulvericula France 10-12-Dt. brown silty SAND, most wet * Collectal Sample [28-38-18-10-12] BOH (Q) 12
						3				Drilling Contractor: Environmental Drilling & Remediation Driller: Brack Hease
Dia.Sc	L SPECII reen/Riser: of Hale:		TIONS:			en Inte r Interv	75			Sandpack: Grout: Bentonite: Cover:

E				echno	ology, I	nc.	,			Job. No. Glient: Managem Air Force Besse G0787.31 U.S. Navy; North Div. EBS-28 Drilling Method: Mabile (1) 140 (6 hammer 22 (P-19)
		•	LOG O	F SOIL	. BORII	NG				falling Join 28-58-19
	nates: e Elevation ser Elévati							•		Sampling Method: 2 x 2 4 501.7 Sheet of Sheet of Sheet of Start Drilling Finish Date 10-17-98 Times 10-13-98 Surface Conditions: 9 7455; 9 740.4
Sample	Inches	Dpth	Samp #	PID	Blows		Ft		uscs	<i>J</i>
Туре	Driven/In. Recvrd	Csg.	/ depth (ft)	(pprn) Above bk.	per 6"		bgs		Log	SOIL DESCRIPTION
22	24/16		0-2	0	5		1		SM	0-2 Mod to dark brown dry Silty SAND, little gravel, 1005e.
22	24/18		2-4	0	3	-	2			2-4 - Same as' 0-Z
					2		3			
22	24/14		4-6	0	3		4 5			46 - Vark brown, dry, silty fine SAND, loose
u	24/16		68	0	3	-	6			6-8 - Grading to mod brown
22	24/20		8-10	0	7 17 20 33		6 9			8-10- Mal to DK. brown maist silty SAND, little gravel and foch tragments. loose, becoming firm
					28		0			BOH Q10 * Collected 120-58-19-8-00 and 128-58-DUFIT
							2			
,		-		·			4	j		
							5 6			
-		_					7			
							8			
-		-		-			0			
NOTE	S:				<u></u>	•				Logged by: Steve Welzant
										Drilling Contractor: Environmental Drilling + Remedian Driller: Grad Hease
	L SPECI		TIONS:		_ Scre	en Inte	rval			
	of Hole					r Interv	ał:			Sandpack: Grout: Bentonite. Cover:

			EA Eng							Job. No. Client Hancom Air Force Rose Location: (60787.31 U.S. Nay; North, Div. EB5-28
					ology, I					Drilling Method: 25 140 16 homes Boring No.
			LOG O	F SOIL	. BORII	NG				Mobile rig 20in 28-SP-20
	e Elevation					-		-		Sampling Method: Z <zy 1.<="" of="" sheet="" split="" spoon="" td="" =""></zy>
Well R	liser Elévati	ion;						•		Drilling Water Level Start Orilling Finish Date 10.47.33 Times 10.47.99
										Tunes 10.73 Tunes
			· .		T 2.					Surface Conditions. 67433
Sample Type	Inches Driven/In. Recyrd	Dpth Csg.	Samp # / depth (ft)	PID (ppm) Above bk	Blows per 6"		Ft bgs		USCS Log	1
	24/20			15	3		0			0-Z - Mat-brown sifty JAND, little graval.
22	120	<u> </u>	0-2		7		١.		SM	darker (a) bottom day - 1900 155 tores
	١ .	L		0	18		į '			(S) OF FACE
22	24/18		2-4	0	20 22		2			2-4- Dark brown, most silly SAND, little
ł				0	29		3	\vdash		
22	24/18		46	0	23 32		4			4-to- Dark brown silty fine SAND, moist little gravel
				0	12		5	┝		
55	24/8		6-8	•	7		6			6-8 - Dark to mad, brown, moist SAND
	1 8	H	00	0	33 73		7	\vdash		wood chies
	-	 		0	30					
22	24/12		8-10	0	13		8	\vdash		8-10- Dack brown, most towet
				0	12		9			* sample collected 28-58-20-8-10
 -	 	-		<u> </u>	13	-	10			KOH (Q) 10
<u> </u>	<u> </u>			 			71			
1	l						('			
							2			
 	 	-	ļ				3	\vdash	l	
<u> </u>	ļ		<u> </u>	<u> </u>						
							4			·
						Ì '	5		1	
	 				 	ł	6	H	l	
L_	<u> </u>					1	l		1	
	1			ŀ		ł	7	H	l	
 	 		 			1	В		1	
	ļ	_							ļ	
			Ì	1		ł	9	-	l	
	1					1	٥		1	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	
NOT	ES:									Drilling Contractor: Environmental Drilling + Remediate Driller: Brad Haase
										Drilling Contractor: Environmental Drilling + Remediation
										Driller: Brad Haase
WEL	L SPECI	FICA	TIONS:							
	reen/Riser.		·		_	en Inte				Sandpack: Grout:
Hotton	n of Hole		٠.		KIZE	r Interv	al,			Bentonite Cover:

														_5	•		
			EA En				∍,			Job. No. 2960060	Client	NCBC	, NAVFAC Davisville	Location: EBS	-28		
	YA		and	Techno	ology,	inc.				split barrel sar		cer ATO	<u></u>	Boring No.			
			LOG O	F SOIL	BOR	ING								28-6	w-0	1	
Coordi								_		Sampling Met	hod: Sp	it Spaw				_	
	e Elevation iser Elevat							_		Drilling Water	Level	T		Start	heet !		
	1361 LIGIGE							-		Date		<u> </u>		800	Times	15	inish
Ì										Time Surface Condi	None: D	~(C		10-15-98			5 K
Sample	Inches	Dpth	Samp#	PID	Blows	T	Ft	T	uscs		iuris.	rass		10 10 78		10.1	DE
Туре	Driven/In. Recvrd	Csg.	/ depth (ft)	(ppm) Above bk.	per 6"		bgs		Log			SOIL	DESCR	IPTION			
22	24/6		0-2				0		[0-2 D	k. b.	(our	dry ,	silly for	ne Si	AW Z	>
	10	_	-		 	ł	١,	\vdash	ł			tle gre	wil	trace.	<u>ərga,</u>	ri CS	
i _						1			1						<u>`</u>		
55	24/2		2-4		<u> </u>	1	2		•	2-4-	13/00	أدل مرس	Ity to	~ SAN	SD, at	'ry	
<u> </u>	1/2	-	10 1		<u> </u>	ł	3	\vdash	•			205e					
	l													/ <u>.</u>			
SS	24/10		4-6				4			4-6-	DOM	prou	m, C	F Silty	JAW	D ,	
	10	-	1 9		<u> </u>		5	H			mo	1St 1	11110	. grav	el,	/96	se
•																	
55	24/2		6-8				6	П		6-8-	Sam	e as	4-6				
<u> </u>	116		00				7	Н									
							1	H					_		<u></u>		
22	24/14		8-10				8			8-10-	SQME	25	68	wet			
2/	14		010				9	_						 ,			
Ĭ '							Ů	H									
55	24/		10-12				10			10-12-	Pour	ded !	down	to 104	USQ/	(G).	25
	/		10-12				11	Н			<u>'</u>	<u> </u>	-A- O-	7 1 Ca			
1							''	Н				1000		5-01-2	3-25	-	
50	24/		12-14				12			12-14-	·		90 00		nsi	552	57
22		Ш	1019					Ы				angl	0 7				
j	,						3	Н		· · · · · · · · · · · · · · · · · · ·		100 [B-GL	1-01-1	0-13		
	-						4	H						······································			
	<u> </u>																
	j						5	Н									
 	 	\vdash					6	Н		BOH	(0) 2	5					
	l/i																
							7										
}		\vdash					8	H									
ļ				! !				H						····			
							9										
							_	Ш	ı								
]	,					0	Н	ł								
NOTE	L S:	لـــا					-			Logged by:		Stev	e Wol	2001		·	
- 1312	- 									Drilling Contra	ctor:	50650	;rtece	cont Dti	 የ		
									ł	Driller:	•	Bro	el H	agre			
\ 	0050										•						
	_ SPECIF een/Riser:	·ICAI	IUNS:		Scree	en Interv	ral [.]			S	andpack:			Grout			
E≥ottom				 		Interval	-				entonite:			Cover:			
											-						

Coordi Sufac	nates: e Elevation iser Elevati		EA Eng and T	rechno	ology,	Inc.	,	-		Job. No. Z940060 Client: NORDIV, NAVFAC NCBC Davisville CBS - 28 Drilling Method: Boring No. Sampling Method: Z8-GW-0Z Sampling Method: Sheet / of Drilling Water Level Start Drilling Finish Time J435 Times J700 Surface Conditions: 9/855 66034 /0-14-99 10-14-98
Sample Type	Inches Driven/In. Recvrd	Dpth Csg.		PID (ppm) Above bik.	Blows per 6"		Ft bgs		USCS Log	
22	24/4		0-2	Ġ			0			Dk brown dry, silty fine SAND, little gravel, trace organics
S	24/0		Z-Y	_			2			2-4-10 recovery
ις	24/0		4-6	-	·		4			4-6-No recovery
5	24/10		6-8	0.2			5 6 7			6-8- Black wet, Sittle Bine SAND little wood chips
N	24/12		8-W	11			8			8-10-Black silt as above w/ some
55	24/12		10-12	2			10			10-12- Gray, wet, fine SAND, some Silt
N	₹/ _{IO}		12-14	0			12	-		12-14- Same QS 10-12
							4			- Drove god to refuser (033' collected Gw sample
							5 6			- Drilled new hale 10 to the E for collection of shallow GW saufle
							7 8			[28-BW-02-8-10]
							9			
NOTE	S:							•		Drilling Contractor: Steve Welzaut Drilling Contractor: En viron montal Drilling Rengalo Driller: Brad Harse
									I	Driller: Brad Harse
	SPECIF en/Riser. of Hole:	ICAT	TIONS:			n Intervi	-			Sandpack: Grout: Bentonite: Cover

EA Engineering, Science, and Technology, Inc. LOG OF SOIL BORING Constitute: Suphee Elevation: Suphe											Job. No. Client: NORDIV NAVEAC Location:
Continues: LOG OF SOIL BORING Continues: Supple Envolve: Supple Envolv				FA Fn	oineer	ina Sa	cience	.			coodes.
LOG OF SOIL BORING Bio Let Samp Land Surphing Method: Surphing		78	\					-,			Drilling Method: 140 ! Have see & Rogins No.
LOG OF SOIL BORING Constitute: Simple Elevation Simple Diffing Frinch Diffing Matter Level Some Conditions Soil DESCRIPTION On-6, - Growing Have Sample, James Co Grade Simple Elevation Simple Have Sample (10-8-98 10-8-7) Simple Simple Have Sample (10-8-98 10-8-7) Simple Have Sample (10-8-98 10-8-7) Simple Have Sample (10-8-98 10-8-7) Simple Have Sample (10-8-98 10-8-7) Simple Have Sample (10-8-98 10-8-7) Simple Simple Simple (10-8-98 10-8-7) Simple Have Sample (10-8-98 10-8-7) Simple Simple Simple (10-8-98 10-8-7) Simple Simpl	1		\	Bild		J. J. J. J. J. J. J. J. J. J. J. J. J. J	,,,,,,				split barrel sampler continuously - (m)
Conditions: Super Elevation. Sheet I of Start Spream. Sheet I of Start				LOGO	F SOII	L BOR	ING				
School Inches Dahl Samp F PID Blows PT Day Day Dogs Log SOIL DESCRIPTION Sample Inches Dahl Samp F PID Blows PT Day Dogs Log SOIL DESCRIPTION SS 27 Ju 2-4 3125 3	1					,					18-6W-03
School Inches Dahl Samp F PID Blows PT Day Day Dogs Log SOIL DESCRIPTION Sample Inches Dahl Samp F PID Blows PT Day Dogs Log SOIL DESCRIPTION SS 27 Ju 2-4 3125 3	Coordi	inates:					_		_		Sampling Method: - Split 8 prom
Dots Time Surface Inches Diph Samp 8 PID Blows Type privering. Cog 1 depth (ppm) per 10 across of 10 across o	Surac	e Elevation):						_		Sheet / of
Sample Inches Doth Samp & PID Glows From Surface Confidences GRASS 10-8-98 10-18-8 Type Drivering Cag 1 depth (pam) per pop p	WAR R	iser Elevat	ion:						_		Drilling Water Level Start Orilling Finish
Sample Inches Deph Samp 8 PD Blows Type Privering Cag / depth (1) soons 6 PD Blows Record (1) Accord 6 PD Blows File Deph Samp 8 PD Blows File Deph											Date 3:/5 Times
Sample Inches Optin Sample PID Blows (optin lopin) by by by by by by by by by by by by by											Time
Type Driventh, Cog. 1 depth (10) soons or or or or or or or or or or or or or		<u> </u>					,	·	_	1	
SOIL DESCRIPTION SS 27 1 0-2 1 0-6" - brown Rue sand, some coanse Sand and graved - grad of come - grad of come - grad brown sand of some - price of wetal glow wird in with - price of wetal glow wird in with - price of wetal glow wird in with - price of wetal glow wird in with - price of wetal glow wird in with - price of wetal glow wird in with - price of wetal glow wird in with - price of wetal glow wird in with - price of wetal glow wird with - price of wetal glow wird in with - price of wetal glow wird with - price of wetal glow wird wird - price of wetal glow wird wird - price of wetal glow wird wird - price of wetal glow wird wird - price of wetal glow wird - price	- '	•			1)	ł	1]	1	1
SS 27 10 0-2 1 0-6 "- hrown sawd, sawd of sawd 5-2" - dark sown sawd of sawd 9 mind the	Туре		Csg.	1	1 " ', '		ł	ogs		rog	
\$5 27 19-10 \$5 27 19-10 \$5 27 19-10 \$6 29 29-10 \$6 29 29-10 \$6 29 29-10 \$6 29-10 \$7 20 \$7 20				(11)	Above blk.	6-	↓	 _	}—	}	SOIL DESCRIPTION
\$5 27 19-10 \$5 27 19-10 \$5 27 19-10 \$6 29 29-10 \$6 29 29-10 \$6 29 29-10 \$6 29-10 \$7 20 \$7 20	~ (24/	ſ	0-2	l .	 -	1	ľ	-	ł	0-6 - 6 roun time same, some coarse
\$5 27 19-10 \$5 27 19-10 \$5 27 19-10 \$6 29 29-10 \$6 29 29-10 \$6 29 29-10 \$6 29-10 \$7 20 \$7 20		1/1	├	- `	 	-	ł	1	┢	ł	B-0" - of the control
25 27 19 10 12 10		1	1	5	l		1	•		1	and - de
55 27 10 12-14 12 12 12 12 12 12 12 12 12 12 12 12 12	00	77	!	 	1		!	2			- Funda - org
5.5 27 10" 4-6 5.5 27 10" 4-6 5.6 8 8 6 10" black sill of Sand mixed with Smy grave! 10 10 10 10 10 10 10 10 10 10 10 10 10 1	53	2"	1	2-4			1	1	Г	1	0-2" deep brown w/ wet when arene
5 27 11-10 10 4-6 5 8-10 word forge 8-10 word forge 8-10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word chip 10 word forge 10 word chip 10 word forge 10 word forge 10 word forge 10 word forge 11 word forge 12 word forge 13 word forge 14 word 15 word forge 16 word 17 word 18 word 19 word 19 word 10 word 10 word 10 word 11 word 12 word 13 word 14 word 15 word 16 word 17 word 18 word 19 word 19 word 10 w		1	Γ	<u> </u>			B: SS	3			- miere of we tel also unival in with
5 27 11-10 10 4-6 5 8-10 word forge 8-10 word forge 8-10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word forge 10 word chip 10 word forge 10 word chip 10 word forge 10 word forge 10 word forge 10 word forge 11 word forge 12 word forge 13 word forge 14 word 15 word forge 16 word 17 word 18 word 19 word 19 word 10 word 10 word 10 word 11 word 12 word 13 word 14 word 15 word 16 word 17 word 18 word 19 word 19 word 10 w		 _					L_	L			fin sand little graves
\$\frac{1}{20} 6-8 \times \\ \frac{6}{7} \\ \frac{1}{20} 6-8 \\ \frac{1}{7} \\ \frac{1}{20} 6-8 \\ \frac{1}{7} \\ \frac{1}{20} 6-8 \\ \frac{1}{7} \\ \frac{1}{20} 6-8 \\ \frac{1}{7} \\ \frac{1}{20} 6-8 \\ \frac{1}{7} 6-1 \\ \fr	22	27		., .				4			
\$\frac{1}{20} 6-8 \times \\ \frac{6}{7} \\ \frac{1}{20} 6-8 \\ \frac{1}{7} \\ \frac{1}{20} 6-8 \\ \frac{1}{7} \\ \frac{1}{20} 6-8 \\ \frac{1}{7} \\ \frac{1}{20} 6-8 \\ \frac{1}{7} \\ \frac{1}{20} 6-8 \\ \frac{1}{7} 6-1 \\ \fr		10"	L	7-6				اً	!		10-0 - Wood frags
SS 27 8-10 4730 8 10 10 10 27- Shuh silt's coarse soul with a coarse soul we will be coarse soul we will be coarse soul we with a coarse soul we will be coarse soul we wish stained bands - washed - up to sample	1	1						5			8-10" black 51/4 9 Sand Mixed with
SS 27 14-16 SS 27	8 /	<u> </u>	 		K		!		\vdash		Jim grave!
SS 27 14-16 SS 27	25	1/2		6-2	(X)			"	\vdash		110-10-10-10-10-10-10-10-10-10-10-10-10-
\$\frac{27}{27} \qu		120		00				7			Con lund
10 10 10 10 10 10 10 10]			1						
10 10 10 10 10 10 10 10	Ci	24		0- 10			(1)	8			1 2 0-2" - wood dup
27 10 12 10 12 10 2"-6" - Peat - wet 10 2"-6" - Peat - wet 11 2	? >	1		810			7:50				as along
55 27/13: 12-14 12 0-B" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 8-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 10-14" - gray /oliv		-						9	Ш		
55 27/13: 12-14 12 0-B" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 8-13" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 8-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 9-14" - gray /olive pay fine sound 10-14" - gray /oliv	,		اسيا		J				H	\vdash	0-27 black Silt -
29/13 12-14 12 0-B" - gray loting pay fine sound 8-13" - mistry that to coarse found were rust stained bands - washed - up to 12 13 14-16 15 16 17 18 19 10 10 10 10 10 10 10 10 10	SS	27		10.00	(*)	 		10	Н		2"-6 - Peat - wet
SS 27/13. 12-14 12 0-B" - gray/olive prof. fine sound 8-13" - gray/olive prof. fine sound 8-13" - gray/olive prof. fine sound 8-13" - gray/olive prof. fine sound 8-13" - gray/olive prof. fine sound 8-13" - gray/olive prof. fine sound 8-13" - gray/olive prof. fine sound 8-13" - gray/olive prof. fine sound 8-13" - gray/olive prof. fine sound 9-13" - gray/olive prof. fine sound 9-13" - gray/olive prof. fine sound 9-14" - gray/olive prof. fine sound 9-15" - gray/olive prof. fin		6		1070	\bowtie	 		,,	H		
SS 27 14-16 3 8-13" - bondstop of flood to coarse soul were - rusty stained bounds - washed - up to 12" Unide - dioret food to reprose the sounds of the soul of t											<u> </u>
SS 27 14-16 3 8-13" - bondstop of flood to coarse soul were - rusty stained bounds - washed - up to 12" Unide - dioret food to reprose the sounds of the soul of t	P /	24/	\vdash					12	П		O-B" - gray/olin no line
SS 29 14-16 - Washed - Washed - up to 14-16 - Atout rock to repused Barder - washed - up to - Atout rock to repused Barder - washed - up to - Atout rock to repused Barder - up to - Atout rock to - Atout roc	3 5	1/13		12-14							
SS 27 14-16 -drove rod to reposal for day water sample Reliable To the day water To the sample To the sample of the sample								3			- rusty stained bands - washed - us to
SS 27 14-16 -drove rock to refused for day water sample -drove rock to refused for day water sample 1		<u> </u>		نـــــا							424 drile
5 Sample 5 Sample 17 May 13707 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57	27/		14	 			4			
5 Sample 7 ,8 ,8 ,9 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0				11-16	igsquare	<u></u>	i I		Ш		
7		<u> </u>						5	\vdash		sample
7		 					┝┈┤		H		
18 Defusion 42		[٥	Н		
18 Defusion 42		 	 -					7	\vdash	ŀ	
											4 4 42
			┝─┤					,8	\vdash		D. 105 of 16
		1 1		l				7-		ł	
								9			
)									•
							l	0			
(\mathcal{L})								ı			
		A	لبيا								
	١			. 0	. A.	<i>t</i> .		15+	L	le .	Logged by: P. Higgins
E VALUE 15t lade	L a	J 12'	-	cieac	w "	w U	Manage	n dia	~~	_	Orilling Contractor: C. U+K
1. at 12' - decided to USI 1st hale prilling contractor. E. D+K	1.	11.	1	11.	+	G 1 la		ch	الما	1	Paril Hono.
1. at 12' - decided to USI 1st hale arilling contractor. E. D+K	ای	raus,	۾	Laon	ر لس	! J	MIN.	THE OWNER OF THE OWNER OWNER OWNER OF THE OWNER OW	,_ _ ,	• 1	Driller: BIGN 1144124
Le at 12' - decicled to use 1st hak prilling contractor: E. D + K Reach Hage	سيية	ا ليهار	r F	びげ	at the	LCD 1	wat.	en 🏻	Eu	MU	
Le at 12' - decicled to use 1st hak prilling contractor: E. D + K Reach Hage			ICA.	hons;	. <u> </u>	[3	Γ	
Leat 12'-clearly to use 1st hak prilling contractor: E. D + K I shallow (don to 9') and start priller: Brad Hagse WELL SPECIFICATIONS;	Dia. Scr	een/Riser.				Scree	en Interv	jak:	}		Sandpack: Grout
Le st 12' - cleacled to use 1st help prilling contractor: E. D + K Shallow (don to 9') the start priller: Brack Hagse WELL SPECIFICATIONS: Screen Interval: Sandpack: Grout							,	_	1		
Le st 12' - cleacled to use 15t like prilling Contractor: E. D + K Shallo w (don to 9') the start priller: Brack Harse Brack Harse Brack Grout Brottom of Hole: Bentonite: Cover:	4.1	· lad	~	75.	م م بما	W	1 18	st 1	1 1		Querion land on the second
Le st 12' - cleacled to use 15t like prilling Contractor: E. D + K Shallo w (don to 9') the start priller: Brack Harse Brack Harse Brack Grout Brottom of Hole: Bentonite: Cover:	~~	w.u.	1	٠ ــــــــــــــــــــــــــــــــــــ	C .		1	Ţ	ካ .	-	some of munner of second
Le at 12' - clecicled to USL 15t lisk Drilling Contractor: E. D + K Shallow (don to 9') the Start Driller: Brack Hagse WELL SPECIFICATIONS: Dia. Screen/Riser: Screen Interval: Sandpack: Grout: Bottom of Hole: Riser Interval: Bentonite: Cover:	HOACIGE	01.WB2 13kg	£90 11	12.73 12.73	2)	wh	S	فد	16	-5	S'hac() ()
Leat 12' - clearly to use 1st hak Drilling Contractor: E. D + K Shallow (down to 9') and start Driller: Brack Harse NELL SPECIFICATIONS; Screen Interval: Sandpack Grout											

E			EA England	gineeri Techno			·,			NCBC Davisville EGS - 28 Drilling Method: Boring No. split barrel sampler continuously. USI'M
Coordi	nates:	•	LOG O	F SOIL	. BOR	ING				a still brushe method - 140 is 28 - GW - 04 hammer - Acker Rig Sampling Method: 1"2" SS says les
,Surfac	e Elevation							-		Sheet of Drilling Water Level Start Drilling Finish
	_							•		Date 9:00 Times Time Surface Conditions: PAUEUEUT 10-8-98
ample Type	Inches Driven/In. Record	Dpth Csg.	Samp # / depth (ft)	PID (ppm) Above bit.	Blows per 6"		Ft bgs		USCS Log	
SS	24/3	ΝA	o-2 '			9:05	0			O:13" busin to doub bosin sit to coarse sand, some graves - fill? de
25	27 8		2-4'				2			0-2" os alson 2-8" gray fine to weaking sand some
53	24 /						3			-0-1" - wood chip - blocked verever
- J	1"		4-6				5			-moist
٤٤	27/14		6-8			1	- ₇			0-1" - black, silt to very fine same
ડેડ	27/4"		B-15				8			0-2"- as above - wet 2-4" - dark gray lowing very fine to fine saul we
<u>در</u>	24/8"		10-12'			9:35	10			0-8" - silt to fine sand laste olive gray
દા	24/24"		12-14				12			0-14"- as above medius 14-20"- dark slive/gry fits to coase samp 20-24" slive fine to medium count-week
ะว	24/1	,	14-16				4			0-12" organic peat lines - wet 12-13" organic peat lines - wet
C.R.	24/24		16-18				6			0-204 - gray fine soul wet 20-24" - slike sit to fine soul-layered (thin 42-44) wet
5.5			18-20	9.9			8			Hit Refusal 94'
							9			Saystul G. W 42-441
MOTE				<u> </u>	لـــــــا	l	اــــــ رر	i		Logged by: Paul HIGGINS
کمی (نااىم. نالعان	W w	·/ Sand	8.	- de	cidu	1 ti			Driller: Subsurface Duilling & Remediation
VVELL Dia.Scr		ICAT	nons:	- pul	Scree	nd ive	t ug al:	• • •	hon	ls filled inthe saul (4') - will ste stops continuous sandpack saul (4') - s. scrool steps by S drive por
Bottom:	•	ve	Jusa	1 -t		Interval	-		F (Bentonite: Cover:

				EA Eng	uineeri	na Sa	ience	.			Job. No. Client NORDIV, NAVFAC Location: NCBC Davisville ESS 28
		TA			echno			•			Drilling Method: 170 to Meisser Boring No. Split barrel sampler continuously. Sing
	5			LOG O	F SOIL	. BORI	NG				
											avsh sixtu
	Coordin	ates: Elevation:							-		Sampling Method: Soil Porobe w/ 11/2" - 27" Gong SS saus by Sheet 1 of 7
		ser Elevation	,						-		Drilling Water Level Start Drilling Finish
											Time 9:00 Times 1/508
											Surface Conditions: Grand / Steves: 10-7-98
1		olinchia. Driven/In.		Samp # / depth	PID (ppm)	Blows		Ft bgs		USCS Log	1
76	Type	Recyrd	Cay.	(ft)	Above blk.	6"			<u> </u>		SOIL DESCRIPTION
	\$ \$	27/5"		0-2			805	0	L		0-7" - gray to borrow fine to coarse sand
		74		0 2			K 25	,	L	1	7-9"- brown, fin to medium sand - che
- 4	, j				ļ	 	 	ļ.,	┡	<u> </u>	0-8 - dark burger fine to median sand.
	23	24/8		2-4			•		匚	1	some silt, some graves, che
						<u> </u>		3	┝	ł	
	SS	24						-	E	-	0-6" deck brown to gray, silt to coarse
		/i"		4-6				5	┝	ł	wood, maish -no pro this
i									匚		
	SS	24		6-8'		 	1	6	┝		0-7" as above - mort
		7		-	,	<u> </u>	*	7			
	55	24/	<u> </u>					8	E	-	0-2" as above unixed with wood frags
	23	2"	,	8-10	ļ		ł	9	F		-wet -us PID "hits"
	1									<u> </u>	
	23	24/87		10-12				10	-	1	grand - us PID "hits"
		. 0		70 72		7,		11	匚	l	T T
	22	24/						12	-		- in recover
	23	16"		12-14			7:00		匚	l	
						 -	i	3	\vdash	ł	
	55	24/2		" "				4			0-1 - would chip
		1		14-16	 		1	5	L	}	1-2" sack gray to black filt to very file
		- 7		<u> </u>	.			- 6		 	0-24" are, grading into olive near Sollar,
	55	24/24	1	16-18			1		L	1	you there to this coul med little
							9:3	7	L	}	cooner Sand and gravel wet
	22	24/	1./0		 		 	8	E	 	
		/	WA	1	 		1	9		l	No Sauple - No lectory
		}		}			1	, ,	\vdash	}	See west sure - 1
								-	E	ł	10 164360 40
	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	1	+	<u> </u>	D
	NOTE	S:					1				Logged by: 1941 HI 66-INS
	4'5	main	4 S	ands	ofte	n po	/lu	1			Drilling Contractor: Subsurface Orithing & Remediation Brown House
	Le	n in	i ferci	બ (6	18	/, 'w	عم ال	su wd	di	run	Driller: Biral Haace
SOT	م کرد	viht 1	۔ ما	TIONS	י משד	n sa	~)U	Ø t	lies	-	THE VIEW OF THE PROPERTY OF TH
				TIONS!	•	a	化 en inter				Sandpack: Grout:
	L⊃ia.Scr B≥ottom	een/Riser. of Hole:				-	r Interv		_		Bentonite: Cover.

•

										Joh No. Clinate NOCON MARIA				
			EA En	gine r	ing, S	cienc	₽,			Job. No. Client: NORDIV, NAVFAC Location: NCBC Davisville				
	J A			- Techn			-			Drilling Method: Boring No.				
	-									split barrel sampler continuously.				
			LOG O	F SOII	L BOR	ING				28-6w-ac				
Coordi						_		Sampling Method:						
	e Elevation							-		Sheet Z of Z				
Wver R	iser Eleval	KOPT:						-		Onling Water Level Start Orilling Finish				
										Time				
										Surface Conditions: 10-7-98				
Sample		Opth		PID	Blows		Ft	Г	USCS					
Туре	Driven/In.	Csg.	/ depth	(ppm)	per 6"	į	bgs		Log	SOU DESCRIPTION				
	Recvrd	 	(ft)	Above bk.	 	├	20	-	 	SOIL DESCRIPTION				
	1			ļ		1	~	一	i	Refusal: @ 4/				
]	1		1					
	 			ļ	<u> </u>		L	<u> </u>	<u> </u>	Very tight wear Softon .				
					 -	1	₹ 2	\vdash	f					
							3	H		- Placel dellow well rount				
										1000				
					L		₹ 4 5	\Box		- pounded done to 10' - placed				
							₹ 6	Н		10' Centing of 1" DITE 1000				
										,				
							7			boing - sugglest bile ofter				
							78			purgue asout /2 gal-				
							9			Sunt I have around 8. C-9				
							370	Н						
							11							
										at selon the apparent bles.				
			l				32	\vdash		interface,				
							3							
							-74							
			1				5 4 5	一	Ì					
		ŀ	1	ŀ			36	-						
							7	\vdash						
							3 в							
						l		4	ļ					
	i	1	ŀ	ŀ	{	l	9		ŀ					
					{		90	1						
MOTE	 S:		- '							Logged by:				
									1	Drilling Contractor:				
										1.2				
									1	Driller:				
PVELL	SPECIF	ICAT	IONS:											
	en/Riser.					n interv	_			Sandpack: Grout:				
Sottom of Hole: Riser Interval:										Bentonite: Cover.				

		EA Engine ring, Science,									Job. No. Citent: Hanseem Air Force Base- Location:					
					jine ni echno			•		•	60707.31 EB 5-28					
ļ		VA	\	ang I	eculi0	iogy, I	ITIG.				Drilling Method: Vibrates hammen Boring No.					
				LOG O	= e011	POPI	NG				13k4 Svil pushe					
). !		1	-	LOG O	JOIL	BORI	140				28-6W06D					
ĺ	Coordir	nates:														
		Elevation							-							
ļ	Well Riser Elevation:										D-99					
l											Date					
1											Time 10:38 Times					
											Surface Conditions: Gravel / shows 80-6-88					
	Sample Inches Dpth Samp # PID Blows Ft USCS									uscs	The first to be to be					
	Туре	Driven/In.	Csg.	/ depth	(ppm)	per	l	bgs	ļ	Log						
		Recvrd		(ft)	Above bk.	6"					SOIL DESCRIPTION .					
	22	24 /						0	П		0-11" - hight gray sitt to coarse soul					
	27	/i		0-2						1	· w/ solve aspect. clus					
							I I	1								
ļ										1						
	22	24 / 5						2			0-4" - tour, medium to coarse sand, little					
*		24/1		2-4			10:45		Ш		Pine des					
9								3			4-11" - durly Shore to deals once from to					
i					٠,٧٢				Ш		median to coarse frent feet gravel de					
Į	ß	27/1		4.6	*			4	Ш							
		10	lacksquare	7.6		7		5	目		No recovery					
			-			14										
		21.00	\vdash			1			Ш							
4	S 2	24"/5		6-8			卫	6	Ш		0-3" - gray, fine to inaction sant, few greet					
		<u> </u>	\vdash	0,0				. 7	Н		usex = !					
			.				4	· ′	Н							
	-	7/0 /		-				8	-							
	22	24/	''	8-10			\ \	ا	Н	•	AD ROCKING -					
_		A CONTRACTOR OF THE PARTY OF TH	\vdash	0 70			3	9	Н							
1		8					3		Н							
	21	249/					*		Н	<u> </u>	0-4- dark brown median to coarse					
	SZ	1		10-17				. 1	\exists		saul minor gravel some silt wet					
										,	4-11" - fishous organ's - peat" -wet					
		z.	1					٠, ا			The first of the f					
	ss	24/11						3			0-3" dark you very file fame and Soft wet					
٠	~	/3"		12-14			549.00			1	70 7					
							લાક									
						•	•									
	SS	27						4			0-74" - olive from wedien to fine					
		NY		14-16			1107.	5	-		soul - wex little coarse soul					
		ľ					(ltZ)									
				1							- running sand filled in vodo to					
	<u> </u>	24						6			B'- with pull up replace porter					
	<u> </u>	<u>/</u>		110-18				7	H	. 1	and bausher down to refusal -					
		I									to get a water sangle					
	<u> </u>		L		 				H							
	85		1	0				8	Щ							
	<u> </u>	/_		B-10	 			ا			- refusal @ 37'					
				İ				9	Н							
		!	_		\vdash	·			⊬	 	pulled up outfur ious 2 w					
	cy .	4		<u> </u>				0	Ш		expere /21 mm same - purge well					
	<u> </u>			with				L			whate for szuple					
	HOTE	:e.									P					
-	NOTE	: :		.11 .	n		ſ.	T.			Logged by: P. HIGGWS					
7	itial	borin	g u	11 PH	c auli	som c	ell	V			Drilling Contractor: Sub world Orulling & Remulisher					
	ed - hit vouning cand at 16 - P1/11									A	Drilling Contractor: Subscript Oulling & Remulished					
2										y						
hals to 8' - count sayshe sail - will have down									WILL TIME							
~ ~	MEII ~~7	SPECIE	FICAT	nons:		Α .	~//V	י עי	رسر	ner	down					
	Do Com	een/Riser.	,UA		To v	elvi	en leter	5. r	M	e u	ale campile.					
						-300°	en mær r Interva	₩31. st·			Bentonite: Grout:					
	outom	of Hole:				iase	, men va	a.			Bentonite: Cover.					
	•															

					<u> </u>	 -				Job. No.	Client: Ha	anscom Air F	orce Base	Location:
	A		EA Eng		ng, Sc logy, l		,			60787.31 Drilling Metho	od: Midal	10 61	· · · · · · · · · · · · · · · · · · ·	Boring No.
E			LOG O							140 the increment Collins			28-6W-07	
Coordi	nates: e Elevation	ı:		- ,,				-		Sampling Method: 14 Split Span . Sheet of				
Well Riser Elévation:								-		Drilling Wate	r Level			Start Drilling Finish
										Date Time				Sto Times
Sample	Inches	Dpth	Samp #	PID	Blows	<u> </u>	Ft	Γ-	uscs	Surface Conditions: 9(QSS				
Туре	Driven/In.	1	/ depth	(ppm)	per		bgs		Log	[·		80H I	DESCRI	PTION
~	Recvrd	├		Above bk.	6"	-	0	L	 	0-2-	Dack	SOIL I	inoust	silly SAND
<u>vz</u>	24/4	_	0-2	0			١,				1, He	organi	imet	silly SAND
		<u> </u>				1		L				· ·		· · · · · · · · · · · · · · · · · · ·
32	24/6		2-4	0	 		2	\vdash		7-4 -	Sam	e as	0-2	, no organics
					<u> </u>		3							
55	24/1	\vdash	4-6				- 4			4-6 -	Och	brown	, wet	, cf SAND, trace
27	1 - 7 4	\vdash	170	b	 	1	5	├		}	5111	<u> </u>		
	200	<u> </u>	<u></u>	ļ		ĺ	6		1	6-8 -	no ,			
55	24/0		6-8	0			ľ		l ·	6-0 -	100	recoven	4	
							. 7	-						
r	24/14	1	8-10				8			8-10	Dk. 61	own to	bleche	, wet, F/C SAND
 ''	/ 14	┢	0 10		 		9	\vdash	ł	9. 0	79271	trong		peat
	2117	<u> </u>	<u> </u>	 			٥	F	}	10-12-	A.a.t			ved, wat
SS	14/20		10-12					E	1	10-12	rear	16401	C34 //4	ves, was
							'	┝	ł	<u> </u>				
U	24/24		12-14			1	2		1	12-14	grad			gray fine SAND
''		\vdash	10.	<u> </u>		1.	3		1			W. T	uraing	OK. brown (913.5
-	24/	├-		 	<u> </u>	1	4	\vdash	ł	14-16				
22	24/	<u> </u>	14-16	L		1	١.		1	1				
	1				-	1	5	\vdash	1	Pou	ind d	our t	o Cetre	SQ/(R) 29"
						1	6	F]					
-		十		1		1	. 7		1					
<u> </u>	 	╂	}	 	-	\mathbf{I}	۱	H	1					
<u></u>	<u> </u>					1	Ī	上	1					
]				<u> </u>	1	9	-	1	 	 			
 	1	T^-	1	†		1	٥		1					
<u> </u>	<u> </u>	<u> </u>	1	1	<u> </u>	<u> </u>	<u> </u>	1_	<u> </u>	<u> </u>		~		
NOT	ES:									Logged by:		Stave	Wela	M)
										Drilling Con	tractor:	Environ	nentel	Dr. Hing + Remedias
										Oriller:		Brad	Heat	Dr. Iling + Remedias
\####	ו פטברי	EIC A	TIONS		7.									
	WELL SPECIFICATIONS: Dia. Screen/Riser: Screen Interval:										Sandpack			Grout
Botton	n of Hole	-			Ris	er Inten	/al [.]	_			Bentonile:			Cover:
	1	•	` ;			,	1			•				
F P00L	GEONETTE	MPLATE	HAFBSOIL V	M92 18-1⊔	⊦96 09 ∙14	AND .	3 .							

	Elevation:		EA Engand	Techno	ology,	Inc.),			Job. No. Client: NORDIV, NAVFAC NCBC Davisville EBS-28 Drilling Method: Boring No. Split barrel sampler continuously. Sampling Method: Sun Split from Sheet 1 of 1				
Over Ris	Well Riser Elevation:			•				-		Drilling Water Level Start Drilling Finish Date Boo Times 700 Surface Conditions: 500.08				
Sample Type	Inches Driven/in. Record	Dpth Csg.	Samp # / depth (ft)	PID (ppm)	Blows per 6"		Ft bgs		USCS Log	10 18 10				
35	24/12		0-2				0	E		0-2- brown dry silty Rine SAND,				
55	21/2		2-4				2			2-4 - Same GS 0-2				
75	24/6		4-6				4			4-6-no recovery				
22	24/20		6-8				6			6-8- Dath brown to gray, sittle fire SAND, was signed, little gravel				
<u>ڏ</u> ڙ	24/20		В ю				8			8-10 as above, wet				
22	24/8		10-12				10			10-12 DK. brown to gray, Silty SAWD				
							12			- founded down to sofusa 1(8) 3/ collected Sanger [20-6W-68-29-3]				
							4			Shallow Gw Sample @ 10				
							5 6			[28-GW-08-8-10] poren				
							7 8			BOH@ 31				
							9							
	·						0							
MOTE	S :									Driller: Steve Welzer Subsurface DrR Bred Hause				
VFVELL Dia.Scre B≥ottom c	_	CAT	TONS:			en Interv Interval	-			Sandpack Grout Bentonite: Cover:				

Appendix C-2

Review Item 28 (Former Creosote Dip Tank and Fire Fighting Training Areas)

Survey Data

CLIENT'S COPY

LOCATION AND ELEVATION SURVEY DATA EBS REVIEW ITEM 28 NCBC, DAVISVILLE. RI

Date 12/08/98

Coordinates ave R.I. Grid Elevations are NGVD

LEGEND :

TC = Top of well casing

RIM = Rim of well PVC = Top of pvc pipe

Point No.	North	East	Elev	Description	on .
300	194266.27	522864.01	22.95	SB-02	
301	194399.30	522808.53	23.54	SB-03	
302	194119.55	522761.57	30.28	SB-16	•
303 '	194323.00	522859.95	22.55	SB-01	
304	194440.08	522912.88	19.18	SB-05	
305	194461.57	522916.60	19.13	SB-15	
306	194466.44		19.23		
307	194476.37	522918.34		SB-17	
308	194476.79	522924.91		SB-13	
309	194469.12	522862.29		SB-04	
310	194516.48	522876.95	19.76		
311	194534.32	522875.53		SB-18	
312	194555.21	522875.22		SB-06	
313	194549.06	522835.19		SB-19	
314	194536.13	522818.97		SB-01B	
315	194524.17	522816.81		SB-01A	
316	194523.45	522835.09		SB-01D	
317	194533.72	522836.36		\$B-01C	
318	194534.21	522831.99	21.29		53.70
319	194588.09	522968.28		GW-01S	PVC
320	194588.09	522968.28 ·		GW-01S	GND
321	194587.84	522967.41		GW-01D	
322	194427.91	522972.76 522968.55	20.29		00.04
323	194424.08	523020.72		NEAR	SS-01
324	194416.90			PIPE END	D1 10
325	194561.45	523019.48		GW-02S	PVC
326	194561.45	523019.48		GW-02S	GND
327	194562.07	523018.91	•	GW-02D	
328	194515.66	523048.16		GW-035	PVC
329	194515.66	523048.16		GW-038	GND
330	194516.30	523048.74		GW-03D	
331	194473.57	522997.23	16.61	· -	
332	194456.68	523044.78	· ·	GW-04S	PVC
333	194456.68	523044.78	14.93	GW-04S	GND